期刊文献+

基于无线传感器网络的调制识别方法

Modulation Identification Based on Wireless Sensor Network
下载PDF
导出
摘要 针对传统单节点调制识别存在阴影和多径问题,提出了一种利用无线传感器网络进行分布式协同调制识别的方法。首先由相互协作的传感器节点提取信号的五个典型特征构成特征矢量,将特征矢量发送到中心节点,在中心节点通过粒子群算法对人工神经网络进行参数优化,最后利用训练好的神经网络进行分类识别,得到识别结果。对6种信号进行了仿真,结果表明该方法在信噪比大于5 dB且测试样本数大于50时,最终的识别率超过了90%,验证了将粒子群算法应用于神经网络参数优化进行分类识别可以有效提升识别性能。 The traditional modulation identification with single node has problems of shadow effect and multipath fading, in view of which a kind of distributed collaborative modulation identification method based on wireless sensor network is presented. Firstly, characteristic vectors are formed by five typical signal characteristics extracted by the mutual cooperative sensor nodes and then sent to the central node. Secondly, parameters of artificial neural network are optimized by the particle swarm algorithm in the cen- tral node. Finally, classification is carried on by the trained neural network and result is got. 6 kinds of signals are simulated, and the results show that the final recognition rate of this method is more than 90% under the condition that the signal-to-noise ratio is higher than 5 dB and test samples are more than 50. It illustrates that identification performance can be improved effectively when particle swarm algorithm is used in parameters optimization of neural network.
出处 《中国电子科学研究院学报》 2012年第5期524-528,共5页 Journal of China Academy of Electronics and Information Technology
关键词 无线传感器网络 调制识别 粒子群算法 神经网络 wireless sensor network modulation recognition particle swarm optimizer neural network
  • 相关文献

参考文献3

二级参考文献42

  • 1杨露菁,邹岗,李启元.多传感器分布式融合检测自适应算法[J].探测与控制学报,2006,28(5):28-30. 被引量:1
  • 2蒋云霄,杨俊安,钟子发,沈辉.基于Donoho模型和高阶统计理论的小波消噪算法研究及其应用[J].电路与系统学报,2007,12(1):11-14. 被引量:5
  • 3王尚斌,赵俊渭,李金明,孙勇.分布式贝叶斯数据融合系统的遗传算法优化[J].计算机仿真,2007,24(4):183-185. 被引量:2
  • 4Nandi A K, Azzouz E E. Automatic analogue modulation recognitions[J].IEEE Signal Processing, 1995, 46(2) :211 - 222.
  • 5Nandi A K, Azzouz E E. Automatic identification of digital modulations[J].IEEE Signal Processing, 1995, 47(1) : 55 - 69.
  • 6Nandi A K, Azzouz E E. Algorithms for automatic modulation recognition of communication signals[J].IEEE Trans. on Communication, 1998, 46(4) :431 - 436.
  • 7Wong M L D, Nandi A K. Automatic digital modulation recognition using artificial neural network and genetic algorithm[J].IEEE Signal Processing, 2004,84 : 351 - 365.
  • 8Wu Juanping, Han Yingzheng, Zhang Jinmei, et al. Automatic modulation recognition of digital communication signals using statistical parameters methods[C]// International Conference on Communications, Circuits and Systems, 2007 : 697 - 700.
  • 9高玉龙,张中兆.基于联合特征参数和改进概率神经网络的调制方式识别[C]//Proc. of the 6th World Congress on Intelligent Control and Automation, 2006, (6):21 - 23.
  • 10Chan Y T, Gadbois L G. Identification of the modulation type of a signal[J].Signal Processing, 1989,16 : 149 - 154.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部