期刊文献+

曲面积分与局部有限元联合求解摆线锥齿轮非线性振动特性 被引量:1

Combined Solution Method of Surface Integral and Local FEM for the Non-line Vibration Characteristic of Cycloid Bevel Gear
下载PDF
导出
摘要 针对重载啮合中动态传递误差所导致的非线性振动问题,以及如何准确预测和计算等摆线锥齿轮传动中的动态传递误差进一步改善这类齿轮系统振动特性,研究了在一定的运行速度和扭矩范围内摆线锥齿轮的动态响应特性,对摆线锥齿轮非线性振动特性提出了一种新的曲面积分与局部有限元联合求解方法,这种方法可以精确表达轮齿几何及轮齿接触力等对齿轮动力学性能有关键影响的因素;此外,所提出的方法无需将静态传递误差、时变拟合刚度和啮合频率变量等非线性因素作为外部的激励进行求解,而是从齿轮啮合的每一时步计算动态接触力以及动态传递误差,最终得出摆线锥齿轮的非线性振动特性,采用本方法可以较好地改善摆线锥齿轮的振动特性. This paper researches the dynamic response characteristic of the cycloid bevel gear under a wide range of operation speed and torque, and proposes a new method of semi-analytical FEM. The new method can precisely present the key factors of the gear tooth such as the tooth geometry and tooth contact stress, which influences the dynamic characteristic of the cycloid bevel gear significantly. Different from the conventional method, the non-line factors such as the static transmission error, time-varied stiffness and meshing frequency variation are no longer considered as the excitation. However, every time step of gear meshing is considered to calculate the dynamic contact stress and dynamic transmission error, and finally present the non-line vibration characteristic of cycloid bevel gear.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2012年第11期1643-1647,共5页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(51075006)
关键词 摆线锥齿轮 非线性振动 有限元 联合求解方法 cycloid bevel gear non-line vibration FEM combined solution method
  • 相关文献

参考文献7

  • 1晏砺堂,李其汉.盘形锥齿轮的横向振动特性[J].航空动力学报,1955,3(2):23-27.
  • 2GOSSELIN C,CLOUTIER L,NGUYEN Q D.A generalformulation for the calculation of the load sharing andtransmission error under load of spiral bevel and hypoidgears[J].Mech Mach Theory,1995,3:433-450.
  • 3王三民,沈允文,董海军.含间隙和时变啮合刚度的弧齿锥齿轮传动系统非线性振动特性研究[J].机械工程学报,2003,39(2):28-32. 被引量:71
  • 4OZGUVEN H N.A non-linear mathematical model fordynamic analysis of spur gears including shaft and bearingdynamics[J].Journal of Sound Vibration,1991,145(2):239-260.
  • 5VIJAYAKAR S M.A combined surface integral and finiteelement solution for a three-dimension contact problem[J].International Journal for Numerical Method inEngineering,1991,31(1):524-546.
  • 6LASSAD W,TAHAR F,MOHAMED H.Nonlineardynamics of a two-stage gear system with mesh stiffnessfluctuation,bearing flexibility and backlash[J].Mechanism and Machine Theory,2009,44(5):1058-1069.
  • 7LIU G,PARKER R G.Dynamic modeling and analysis oftooth profile modification for multimesh[J].GearVibration.Journal of Mechanical Design,2008,130(3):1-13.

二级参考文献1

  • 1晏蛎堂 李其汉.盘形锥齿轮的横向振动特性[J].航空动力学报,1988,3(2):23-27.

共引文献70

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部