期刊文献+

用辛算法模拟单摆的振荡(英文) 被引量:1

Simulation of oscillation of simple pendulum by symplectic algorithm
下载PDF
导出
摘要 从哈密尔顿体系的角度,采用辛算法求解单摆的大角度摆动难题.构造了二阶和四阶辛格式,并在长时间的模拟中得到稳定和准确的数值解.此外,基于辛算法的良好性质,给出可用来估计振荡周期的近似极值点方法. Simple pendulum is a classical model in both physics and mathematics and its largeangle oscillation is a difficult problem in research.We use symplectic algorithm to solve this problem from the viewpoint of Hamiltonian system instead of Newtonian system.The second-and fourth-order symplectic schemes are constructed,and the solutions are stable and accurate in long time simulation.Furthermore,based on good properties of symplectic scheme,we give an approximateextreme point method to estimate oscillation period.
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2012年第6期721-730,共10页 Journal of the Graduate School of the Chinese Academy of Sciences
关键词 辛算法 模拟 单摆 大角度 哈密尔顿 symplectic simulation simple pendulum large angle Hamiltonian
  • 相关文献

参考文献18

  • 1Feng K. Conected works of Feng Kang (Ⅱ) [ M ]. Beijing: National Defence Industry Press, 1995.
  • 2Feng K, Qiu M Z. Symplectic geometric algorithms for Hamiltonian systems[ M ]. London:Springer, 2010.
  • 3Channell P J, Scovel C. Symplectic integration of Hamiltonian systems[ J]. Nonlinearity, 1990,3:231-259.
  • 4Ganley W P. Simple pendulum approximation[ J]. Am J Phys, 1985,53:73-76.
  • 5Molina M I. Simple linearizations of the simple pendulum for any amplitude[ J]. Phys Teach, 1997,35:489-490.
  • 6Parwani R R. An approximate expression for the large angle period of a simple penduluml J]. Eur J Phys,1987 ,25 :37-39.
  • 7Beeandez A, Hernndez A, Bel6ndez T, et al. An improved 'Heuristic' approximation for the period of a nonlinear pendulum:/inear analysis of a nonlinear problem[J], lnt J Nonlin Sei Numer Simul, 2007,8(3) :329-334.
  • 8Hite G E. Approximations for the period of a simple pendulum[J].Phys Teach, 2005,43:290-292.
  • 9Hite G, E. Approximations for the period of a simple pendulum[J].Phys Teach, 2005,43:290-292.
  • 10Belendez A, Rodes J J, Belendez T, et al. Approximation for a large-angle simple pendulum period[ J]. Eur J Phys, 2009,30:L25-28.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部