期刊文献+

具有温度响应壳层的金纳米粒子的制备 被引量:4

Preparation of Gold Nanoparticles with Temperature Responsive Shell
下载PDF
导出
摘要 利用可逆-加成断裂链转移聚合得到全亲水性的嵌段共聚物[聚(N-异丙基丙烯酰胺)-嵌段-聚(氧化乙烯)](PEO-b-PNIPAM),通过"grafting to"使其接枝到金纳米粒子表面.通过透射电子显微镜、紫外-可见吸收光谱、能谱分析及动态光散射研究了杂化的金纳米粒子的壳层结构及温度响应行为.实验结果表明,得到核壳结构的金纳米粒子,同时其壳层具有温度响应行为.随着温度的升高,其流体力学半径略有减小.在整个升温过程中,由于外层PEO链段的抑制作用,没有发生粒子间的聚集. Double-hydrophilic block polymer poly(ethylene oxide)-b-poly(N-isopropylacrylamide)(PEO-b-PNIPAM) was synthesized by reversible addition-fragmentation chain transfer polymerization using PEO based macro RAFT(reversible addition-fragmentation chain transfer) agent, and the block polymer was further grafted to the surface of gold nanoparticles by "grafting to" approach. The structure and temperature responsive behavior of obtained hydride gold nanoparticles were characterized by transmission electron microscopy (TEM), UV-Vis transmission, energy dispersed X-ray spectrometer and dynamic light scattering(DLS). The results show that core/shell gold nanoparticles were prepared. The average hydrodynamic radius(Rh) of core/shell gold nanoparticles slightly decreased with the temperature increasing. And there is no aggregation between core/shell gold nanoparticles during heating process due to the inhibition effects of PEO corona.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第11期2567-2572,共6页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:50921062)资助
关键词 可逆-加成断裂链转移聚合 配体交换 核壳结构的金纳米粒子 温度响应性 Reversible addition-fragmentation chain transfer polymerization Ligand exchange Core/shellgold nanoparticles Temperature responsive behavior
  • 相关文献

参考文献27

  • 1Luo S. Z. , Xu J. , Zhang Y. F. , Liu S. Y. . J. Phys. Chem. B. [J], 2005, 109: 22159-22166.
  • 2Zhu M. Q. , Wang L. Q. , Exarhos G. J. . J. Am. Chem. Soc. [J], 2004, 126: 2656-2657.
  • 3ZHANG Tiao(张涛), WU Yuan-Peng(武元鹏), PENG Yu-Xing(彭宇行). 高等学校化学学报[J],2010, 31(11): 2033-2307.
  • 4Shan J. , Tenhu H. . Chem. Commun. [J], 2007, 44: 4580-4598.
  • 5Shipway A. N. , Katz E. . Chem Phys. Chem. [J], 2000, 1: 18-52.
  • 6Daniel M. C. , Astruc D. . Chem. Rev. [J], 2004, 104: 293-346.
  • 7JIANG Ming(江明), (A. 艾森伯格), LIU Guo-Jun(刘国军), ZHANG Xi(张希). Macromolecular Self-Assembly(大分子自组装)[M], Beijing: Science Press, 2006: 13.
  • 8Nuss S. , Bottcher H. , Wurm H. . Angew. Chem. Int. Ed. [J], 2001, 40: 4016-4022.
  • 9Ohno K. , Koh K. , Tsujii Y. . Angew. Chem. Int. Ed. [J], 2003, 42: 2751-2754.
  • 10Wang Y. , Teng X. W. , Wang J. S. . Nano. Lett. [J], 2003, 3: 789-793.

同被引文献109

  • 1Shantha K.L.,Harding D.R.K.,Int.J.Pharm.,2000,207(1/2),65-70.
  • 2ChengS.X.,Zhang J.T.,Zhuo R.X.,J.Biomed Mater.Res.,2003,67A(1),96-103.
  • 3Liang L.,Shi M.K.,Viswanathan V.V.,Peurrung L.M.,Young J.S.,J.Membr.Sci.,2000,177(1/2),97-108.
  • 4Hearon K.,Besset C.J.,Lonnecker A.T.,Ware T.,Viot W.E.,Wilson T.S.,Wooley K.L.,Maitland D.J.,Macromolecules,2013,46(22),8905-8916.
  • 5Lu J.,Li J.,Yi M.,Ha H.F.,Radiat.Phys.Chem.,2001,60(6),625-628.
  • 6Roy D.,Semsarilar M.,Guthrie J.T.,Perrier S.,Chem.Soc.Rev.,2009,38(7),2046-2064.
  • 7Buck D.W.Ⅱ,Alam M.,Kim J.Y.,J.Plast.Reconstr.Aes.,2009,62(1),11-18.
  • 8Kim K.J.,Lee H.W.,Lee M.W.,Choi J.H.,Moon K.C.,Koh J.K.,Dermatol.Surg.,2004,30(4),545-547.
  • 9Freiberg S.,Zhu X.X.,Int.J.Pharm.,2004,282(1/2),1-18.
  • 10Fundueanu G.,Constantin M.,Stanciu C.,Theodoridis G.,Ascentzi P.,J.Mater.Sci.Mater Med,2009,20(12),2465-2475.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部