期刊文献+

伪造图像典型篡改操作的检测 被引量:7

Detection for typical tampering operations in a forged image
原文传递
导出
摘要 在图像篡改中常使用几何变换、JPEG(Joint Photographic Experts Group)压缩以及模糊操作,其特性是图像伪作检测的依据。首先定义兼顾重采样和JPEG压缩特性的块度量因子,将待测图像重叠分块计算块度量因子,利用其值的不一致性来检测定位篡改区域。实验结果表明,与现有针对性单一的检测方法相比,该方法可以检测更多篡改组合模式下的篡改操作并能有效定位出篡改区域,且对于有损JPEG压缩具有较好的鲁棒性。其次,提出一种检测模糊痕迹的方法。利用一定的模糊核对待测图像进行再次模糊,计算模糊前后两图像的像素差值,根据差值图像值的不同分类完成模糊篡改区域的定位。实验结果表明,该方法能实现对不同模糊方式的盲检测,且对JPEG压缩的抵抗能力较好,同时与现有基于分块检测的方法相比,大大降低了计算复杂度且能检测出较细小的模糊痕迹。 In image forging, geometric transformations, JPEG compression, and blurring are typical operations. In this manuscript, algorithms for detection of the typical operations in a forged image are proposed based on operational character- istics. First, a possibly composite image is divided into overlapping blocks, and a block measure factor is defined and adopted to describe both re-sampling and JPEG compression characteristics for each block, followed by detection of tampe- red regions. Experimental results show that compared with the existing single targeted detection methods, the proposed algo- rithm can recognize forged images under more combinations of tampering modes and the tampered regions are located more effectively. Furthermore, the proposed method performs well even when the JPEG quality factor is small. Second, an ap- proach is proposed to detect blurring traces. The image is blurred again with an appropriate blurring kernel and the differ- ence of image pixels are estimated before and after double blurring. The tampered regions may he detected through the clas- sification of the values in the difference image. Simulation results show that the algorithm is effective for blurring detection with various blurring operations and it also robust against lossy JPEG compression. Comparing with the existing block-based methods, the proposed method can reduce the computational complexity greatly by avoiding the point-by-point block calcu- lation, and can detect small fuzzy traces.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第11期1367-1375,共9页 Journal of Image and Graphics
基金 科技部国际合作项目(2009DFR10530) 国家自然科学基金项目(60862003) 教育部高等学校博士点基金项目(20095201110002) 贵州省工业科技攻关项目(黔科合GY字(2010)3054号) 贵州大学研究生创新基金项目(2011038)
关键词 伪造图像 重采样 JPEG压缩 模糊操作 伪作检测 forged image re-sampling JPEG compression blur operation tampering detection
  • 相关文献

参考文献4

二级参考文献37

  • 1张晓冬,王桥,吴乐南.利用脊的特征进行信号盲分离[J].电子学报,2004,32(7):1156-1159. 被引量:7
  • 2Fridrich J, Soukal D, and Lukas J. Detection of copy-move forgery in digital images[C]. Digital Forensic Research Workshop Proceedings, Cleveland, OH, USA, Aug. 6-8, 2003: 1-10.
  • 3Popescu A C and Farid H. Statistical tools for digital forensics[C]. 6th International Workshop on Information Hiding Proceedings, Toronto, Canada, May, 2004: 128-147.
  • 4Mahdian B and Saic S. Blind authentication using periodic properties of interpolation[J]. IEEE Transactions on Information Forensics and Security, 2008, 3(3): 529-538.
  • 5Lukas J, Fridrich J, and Goljan M. Detecting digital image forgeries using sensor pattern noise[C]. SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VIII Proceedings, San Jose, California, USA, 2006, 6072: 362-272.
  • 6Shi Y Q, Chen C, and Chen W. A natural image model approach to splicing detection[C]. ACM 9th Workshop on Multimedia and Security Proceedings, Dallas, Texas, USA, September, 2007: 51-62.
  • 7Lukas J and Fridrich J. Estimation of primary quantization matrix in double compressed JPEG images[C]. Digital Forensic Research Workshop Proceedings, Cleveland, OH, USA, Aug. 6-8, 2003: 67-84.
  • 8Luo Wei-qi, Qu Zhen-hua, and Huang Ji-wu, et al.. A novel method for detecting cropped and recompressed image block[C]. International Conference on Acoustics, Speech and Signal Processing Proceedings, Hawaii, USA, 2007: 217-220.
  • 9He J F, Lin Z C, and Wang L F, et al.. Detecting doctored JPEG images via DCT coefficient analysis[C]. 9th European Conference on Computer Vision Proceedings, Graz, Austria, 2006: 423-435.
  • 10Li Wei-hai, Yu Neng-hai, and Yuan Yuan. Doctored JPEG image detection[C]. IEEE International Conference on Multimedia and Expo Proceedings, Hannover, Germany, 2008: 253-256.

共引文献79

同被引文献44

  • 1王波,孙璐璐,孔祥维,尤新刚.图像伪造中模糊操作的异常色调率取证技术[J].电子学报,2006,34(B12):2451-2454. 被引量:39
  • 2陈春宁,王延杰.在频域中利用同态滤波增强图像对比度[J].微计算机信息,2007(02X):264-266. 被引量:60
  • 3FRIEDMAN G L.The trustworthv digital camera:restoring credibility to Ihe photographic image[J].lEEE Transactions on Consumer Electronics, 1993,39(4):905-910.
  • 4POPESCU A C.Statistical tools for digital image forensics[C]. New York:Proceedings of the 6th International Workshop on Infimnation Hiding, 2004 : 128- 147.
  • 5BIANCHI T, PIVA A.Image forgery localization via block- grained analysis of JPEG artifacts[J].lEEE Trans.lnf. Foren- sics Security. 2012,7(3) : 1003-1017.
  • 6扈文斌,刘凯.基于蹙化表不一致性的JPEG同像篡改盲检测[J].中国冈象图形学报,2011,16(3):316-323.
  • 7Chert Yilei. HSU C T.Detecting recompression of JPEG images via periodicity analysis of compression artifacts for tampering detection[J].IEEE Transactions on Information Forensics and Security, 2011,2(6) : 396-406.
  • 8TSOMKO E,KIM H J,IZQUIERDO E.Linear Gaussian blur evolution for detection of blurry images[J].ET Image Processing, 2010,4(4) : 302-312.
  • 9Yang Benjuan,Zuo Juxian,Liu Benyong. Blur detection in image forensics using linear correlation of pixels[C].Chinese Conference on Pattern Recognition, Chongqin, 2010 : 1-5.
  • 10Hsu Yu, Chang Shih Fu. Camera response functions for image fo- rensics:An automatic algorithm for splicing detection [ J ]. IEEE Transactions on Information Forensics and Security,2010,5 (4 : 816 -825.

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部