期刊文献+

有害赤潮显微图像识别的三级分类器设计 被引量:1

The Design of Three Levels Classfiers on Microscopic Images Recognition of Harmful Algae Blooms
下载PDF
导出
摘要 传统的赤潮藻鉴定主要依赖经验丰富的藻类专家依据种的生物形态学特征在显微镜下通过人工目视判读、分类,该方法存在专业水平高、分类人员断层、耗时费力等问题。基于赤潮藻类细胞生物形态学分类特征,通过对藻类细胞3种细节特征(有无角毛、横纵沟、尖顶刺)进行有效的自动提取和描述,提出了显微图像自动分类识别的思想。设计三级两类分类器,建立树状判别体系,将大样本集有效划分为小样本集,构建赤潮藻显微图像自动诊断识别系统,结果表明:多级分类器的设计思想减少了训练时间,提高了识别准确率。 Traditionally identification of HAgs mainly relies on well-experienced algae operators using microscope based on characteristics of biological morphology, which needs high level professional experts that are becoming less and less. Based on the bio-morphological classification features of the HAg cells, the automatic classification system of the microscopic images was presented with the effective automatic extraction and description of three detailed features (seta, cingulum or sulcus, spine) of algae cells. Then we designed the three levels of two types of classifiers, and established the treelike identification system to divide the large sample set into small sets in order to build the microscopic images automatic diagnosis and recognition system. The experimental results show that the design of classifier can reduce the training time as well as improve the recognition accuracy rate.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第11期117-122,共6页 Periodical of Ocean University of China
基金 山东省自然科学基金项目(ZR2010DQ002)资助
关键词 有害赤潮藻 显微图像识别 分类器 harmful Algae blooms microscopic image identification classifier
  • 相关文献

参考文献11

  • 1陈泽浦,刘堃.浅析赤潮灾害形成原因、危害与减灾工作[J].中国渔业经济,2010(1):60-65. 被引量:5
  • 2Andrei C. Jalba,Michael H, et al. Roerdink,Morphological hat-transform scale spaces and their use in pattern classification [J].Pattern Recognition, 2004,37(5): 901-915.
  • 3Andrei C, Jalba A C,Wilkinson M H F,et al. Shape representa-tion and recognition through morphological curvature scale spaces[J]. Image Processing, 2006,15(2) : 331-341.
  • 4Buf H,Bayer M M. Automatic diatom identification [M]. Singa-pore: World Scientific, 2002.
  • 5陈成,杨晨晖,聂文,龚元浩.基于浮游植物图像的模糊算子边缘检测算法[J].计算机技术与发展,2009,19(3):22-24. 被引量:2
  • 6聂文,杨晨晖,陈成.基于数学形态学的海洋浮游植物边缘检测研究[J].南京师范大学学报(工程技术版),2008,8(4):167-172. 被引量:2
  • 7骆巧琦,李雪松,梁君荣,陈长平,高亚辉.基于形状特征的硅藻显微图像自动识别[J].厦门大学学报(自然科学版),2011,50(4):690-696. 被引量:7
  • 8Ivica Dimitrovski,Dragi Kocev,Suzana Loskovska, et al. Hier-archical classification of diatom images using ensembles of predic-tive clustering trees [J]. Ecological Informatics, 2012,7 : 19-29.
  • 9姬光荣,郑海永,王国宇,等.一种无角毛类赤潮藻显微图像目标细胞提取方法[P].青岛:中国海洋大学,2010101155923, 2010-03-02.
  • 10Xu L,Jiang T,Xie J, et al. Red tide algae classification usingSVM-SNP and semi-supervised FCM[C]. [s. 1. ] : 2nd Interna-tional Conference on Education Technology and Computer (ICE-TC), 2010,5(1): 389-392.

二级参考文献21

共引文献12

同被引文献23

  • 1Erickson J S, Hashemi N, Sullivan J M, et aL In situ phytoplank- ton analysis: there's plenty of room at the bottom [J]. Analytical Chemistry, 2012, 84(2): 839-850.
  • 2Culverhouse P F, Williams R, Benfield M, et al. Automatic image analysis of plankton: future perspectives I-J]. Marine Ecology Pro- gress Series, 2006, 312: 297-309.
  • 3Zheng H, Zhao H, Sun X, et al. Automatic setae segmentation {rom chaetoeeros microscopic images [J ]. Microscopy Research and Technique, 2014, doi: 10. 1002/jemt. 22389.
  • 4Jalba A C, Wilkinson M H F, Roerdink J B T M. Automatic seg- mentation of diatom images for classification [J]. Microscopy Re- search and Technique, 2004, 65: 72-85.
  • 5Fischer S, Gilomen K, Bunke H. Identification of diatoms by grid graph matching I-J]. Lecture Notes in Computer Science, 2002, 2396: 94-103.
  • 6Dimitrovski I, Kocev D, Loskovska S, et al. Hierarchical classifi- cation of diatom images using ensembles o{ predictive clustering trees [J]. Ecological Informatics, 2012, 7(1): 19-29.
  • 7Blaschko M B, Holness G, Mattar M A, et al. Automatic in situ i- dentification of plankton [C]. Breckenridge.. IEEE Computer Soci- ety, 2005: 79-86.
  • 8Rodenacker K, Hense B, Jutting U, et al. Automatic analysis of aqueous specimens for phytoplankton structure recognition and population estimation [J]. Microscopy Research and Technique, 2006, 69(9): 708-720.
  • 9Sosik H M, Olson R J. Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry [J]. Limnology and Oceanography: Methods, 2007, 5: 204-216.
  • 10Luo Q, Gao Y, Luo J, et al. Automatic identification of diatoms with circular shape using texture analysis [J]. Journal of Soft- ware, 2011, 6(3): 428-435.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部