期刊文献+

外延晶体硅薄膜太阳电池的器件模拟及性能优化的研究 被引量:6

原文传递
导出
摘要 由于晶体硅薄膜太阳电池兼有晶体硅太阳电池高效、性能稳定和薄膜电池低成本的优点,是最有可能取代现有晶体硅太阳电池技术的下一代薄膜电池技术.本文利用PC1D软件对外延晶体硅薄膜太阳电池进行了器件模拟.为了使模拟更接近真实的情况,我们采用了更符合实际情况的器件结构和参数设置.在此基础上,全面系统地研究了背表面场(back surface field,BSF)层、基区和发射区参数、晶体硅活性层电学质量、电池表面钝化情况、电池内部复合情况和pn结漏电情况等对外延晶体硅薄膜太阳电池光电性能的影响.在影响外延晶体硅薄膜太阳电池效率的众多因素中,辨认出对电池效率影响幅度最大的3个参数依次是基区少子扩散长度、二极管暗饱和电流和正表面复合速度.通过模拟还发现,基区不是越厚越好,基区厚度的选择必须要考虑基区少子扩散长度的值.当基区少子扩散长度较小时,基区的最佳厚度应小于或等于基区少子扩散长度;当基区少子扩散长度较大时,基区少子扩散长度应至少是最佳基区厚度的2倍.此外,本文不但对模拟结果的现象进行了描述,还深化解释了其变化的物理机制.由于外延晶体硅薄膜太阳电池在器件结构上与晶体硅太阳电池具有很大的相似性,所以本文的结论在某种程度上对晶体硅太阳电池特别是当下研究最热门的薄硅片太阳电池也是适用的.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2012年第11期1318-1329,共12页 Scientia Sinica(Technologica)
基金 国家自然科学基金(批准号:50802118) 广东省科技计划(批准号:2011A032304001,2010B090400020) 中央高校基本研究经费青年教师培育项目(批准号:2011300003161469)资助
  • 相关文献

参考文献25

  • 1Ulzhofer C, Altermatt P P, Harder N P, et al. Loss analysis of emitter-wrap-through silicon solar cells by means of experiment and three-dimensional device modeling. J Appl Phys, 2010. 107:104509.
  • 2Rahmouni M, Datta A, Chatterjee P, et al. Carrier transport and sensitivity issues in heterojunction with intrinsic thin layer solar cells on N-type crystalline silicon: A computer simulation study. J Appl Phys, 2010, 107:054521.
  • 3Datta A, Damon-Lacoste J, Roca i Cabarrocas P, et al. Defect states on the surfaces of a P-type c-Si wafer and how they control the performance of a double heterojunction solar cell. Sol Energ Mat Sol C. 2008, 92:1500-1507.
  • 4Farrokh-Baroughi M, Sivoththaman S. Modelling of grain boundary effects in nanocrystalline/multicrystalline silicon heterojunction solar cells. Semicond Sci Tech, 2006, 21:979-986.
  • 5Harder N P, Mertens V, Brendel R. Numerical simulations of buried emitter back-junction solar cells. Prog Photovoltaics, 2009, 17: 253-263.
  • 6Mader C, Muller J, Gatz S, et al. Rear-side point-contacts by inline thermal evaporation of aluminum. In: IEEE Electron Devices Society Staff, eds. The Conference Record of the 35th IEEE Photovoltaic Specialists Conference. Hawaii: Institute of Electrical and Electronics Engineers (IEEE), 2010. 1446-1449.
  • 7Hilali M M, Nakayashiki K, Ebong A, et al. High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters. Prog Photovoltaics, 2006, 14:135-144.
  • 8Kang M H, Hong J, Cooper I, et al. Reduction in light induced degradation (LID) in B-doped Cz-Si solar cells with SiCxNy antireflection (AR) coating. J Electrochem Soc, 2011, 158:H724-H726.
  • 9Clugston D A, Basore P A. PCID version 5: 32-bit solar cell modeling on personal computers. In: IEEE Electron Devices Society, eds. The Conference Record of the 26th IEEE Photovoltaic Specialists Conference. Anaheim: Institute of Electrical and Electronics Engineers (IEEE), 1997. 207-210.
  • 10Rover D T, Basore P A, Thorson G M. Solar cell modeling on personal computers. In: IEEE Electron Devices Society Staff, eds. The Conference Record of the 18th IEEE Photovoltaic Specialists Conference. Las Vegas: Institute of Electrical and Electronics Engineers (IEEE), 1985. 703-709.

二级参考文献17

  • 1McCann M J, Catchpole K R, Weber K J, et al. A review of thin-film crystalline silicon for solar cell applications Part 1: Native substrate. Solar Energy Materials & Solar Cells, 2001, 68: 135-172
  • 2Catchpole K R, McCann M J, Weber K J, et al. A review of thin-film crystalline silicon for solar cell applications Part 2: Foreign substrates. Solar Energy Materials & Solar Cells, 2001, 68: 173-208
  • 3Vermeulen T, Evrard O, Laureys W, et al. Realisation of thin film solar cells in epitaxial layers grown on highly-doped RGS ribbons. Proc of the 13th European Photovoltaic Solar Energy Conference, Nice, France, 1995. 1501~1504
  • 4Eyer A, Haas F, Kieliba T, et al. Crystalline silicon thin-film (CSiTF) solar cells on SSP and on ceramic substrates. Journal of Crystal Growth, 2001, 225: 340-347
  • 5Liang Z C, Shen H, Xu N S, et al. Characterisation of direct epitaxial silicon thin film solar cells on a low-cost substrate. Solar Energy Materials & Solar Cells, 2003, 80: 181-193
  • 6Shen H, Ai B, Liang Z C, et al. Low cost polycrystalline Si thin film solar cells prepared by SSP and RTCVD technology. Proc of the 12th International Photovoltaic Science and Engineering Conference, Jeju, Korea, 2001. 97~99
  • 7Ai B, Shen H, Ban Q, et al. Preparation and characterization of Si sheets by renewed SSP technique. Journal of Crystal Growth, 2004, 270: 446-454
  • 8Ashok S, Pande K P. Photovoltaic measurements. Solar Cells, 1985, 14: 61-79
  • 9Wenham S R, Green M A, Watt M E. Applied photovoltaics. Sydney: Center for Photovoltaic Devices and System, University of NSW, 1995. 239
  • 10Green M A. Silicon solar cells-Advanced principles & practice. Sydney: Center for Photovoltaic Devices and System, University of NSW, 1995. 333

共引文献2

同被引文献36

  • 1林比宏,陈晓航,陈金灿.太阳能驱动半导体温差发电器性能参数的优化设计[J].太阳能学报,2006,27(10):1021-1026. 被引量:16
  • 2Schwede J W, Bargatin I, Riley D C, et al. Photon-enhanced thermionic emission for solar concentrator systems. Nat Mater, 2010, 9:762-767.
  • 3Schwede J W, Sarmiento T, Narasimhan V K, et al. Photon-enhanced thermionic emission from heterostructures with low interface.
  • 4Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 32:510-519.
  • 5Konig D, Casalenuovo K, Takeda Y, et al. Hot carrier solar cells:Principles, materials and design. Physica E, 2010, 42:2862-2864.
  • 6Segev G, Kribus A, Rosenwaks Y, et al. High performance isothermal photo-thermionic solar converters. Sol Energ Mat Sol C, 2013, 113:114-123.
  • 7Segev G, Rosenwaks Y, Kribus A. Efficiency of photon enhanced thermionic emission solar converters. Sol Energ Mat Sol C, 2012, 107:125-130.
  • 8Varpula A, Prunnila M. Diffusion-emission theory of photon enhanced thermionic emission solar energy harvesters. J Appl Phys, 2012, 112:044506.
  • 9Reck K, Hansen O. Thermodynamics of photon-enhanced thermionic emission solar cells. Appl Phys Lett, 2014, 104:023902-4.
  • 10Su S, Wang Y, Liu T, et al. Space charge effects on the maximum efficiency and parametric design of a photon-enhanced thermionic solar cell. Sol Energ Mat Sol C, 2014, 121:137-143.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部