期刊文献+

采用详细化学反应机理研究煤富氧燃烧NO_x生成机制 被引量:2

Modeling NO_x Formation in Pulverized Coal Oxy-Fuel Combustion by Detailed Chemical Reaction Mechanism
原文传递
导出
摘要 本文采用详细化学反应机理,建立氧煤燃烧气固反应模型,分析煤在富氧燃烧条件下NO_x生成机制,研究不同O_2浓度和分级燃烧对NO_x排放的影响。富氧燃烧时,NO_x生成主要路径为:HCN→CN→NCO→NO和HCN→CN→NCO→HNCO→HN_2→NH→HNO→NO。初始O_2增大,挥发分和HCN析出时间提前,高的O_2初始浓度对燃料N转化率有促进作用;煤富氧分级燃烧时,主燃区还原气氛有利于NO还原为N_2,其主要还原路径如下:NO+CO→N+CO_2、NO+H→N+OH和NO+N→N_2+O,当主燃区过量空气系数SR_1从1.15减小到0.6,N最终转化率(t=1000 ms)只是从0.379减小到0.339,相对于未分级燃烧时变化了10.55%,与煤空气分级燃烧相比,煤富氧分级燃烧对N转化率影响较小。 Gas-solid reaction model of pulverized coal was established based on detailed chemical reac- tiou mechanism, the NOx formation mechanism in oxy-coal combustion was analyzed, and the effects of 02 concentration and air staged combustion on NOx emission were investigated. NOx formation paths in oxy-coal combustion are HCN→CN→NCO→NO and HCN→CN→NCO→HNCO→HN2 →NH→HNO →NO. The increase of initial O2 concentration makes the release of volatile and HCN ahead, and increasing initial concentration of O2 promotes the conversion rate of fuel N. In Oxy-coal staged combustion, the reducing atmosphere in primary combustion zone is conducive to NO reduction to N2, and the main reaction paths are NO+CO→N+CO2, NO+H→N+OH and NO+N→N2+O. N conversion rate decreases from 0.379 to 0.339 when the excessive air rate decreases from 1.15 to 0.6, and it decreases 10.55% as compared that of unstaged combustion. Oxy-eoal combustion has slightly influence on N conversion rate as compared that of air-coal combustion.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第11期2002-2005,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金面上项目(No.50976123)
关键词 NOx 富氧燃烧 详细机理 NOx coal oxy-coal combustion detailed chemical reaction mechanism
  • 相关文献

参考文献12

  • 1黄斌,刘练波,许世森,丰镇平.燃煤电站CO_2捕集与处理技术的现状与发展[J].电力设备,2008,9(5):3-6. 被引量:34
  • 2黄斌,许世森,郜时旺,刘练波,陶继业,牛红伟,蔡铭.燃煤电厂CO_2捕集系统的技术与经济分析[J].动力工程,2009,29(9):864-867. 被引量:25
  • 3Rao A B, Rubin E S. Atechnical, Economic and Environ- mental Assessment of Amine-Based CO2 Capture Tech- nology for Power Plant Greenhouse Gas Control [J]. Envi- ronmental Science&Technology, 2002, 36(20): 4467 4475.
  • 4李庆钊,赵长遂.空气分离/烟气再循环技术基础研究进展[J].热能动力工程,2007,22(3):231-236. 被引量:25
  • 5杨小龙,崔玉峰,徐纲,黄伟光.燃气轮机燃烧室化学反应器网络模型研究[J].工程热物理学报,2009,30(9):1585-1588. 被引量:12
  • 6Novosselov I V, Malte P C. Development and Application of an Eight-Step Global Mechanism for CFD and CRN Simulations of Lean-Premixed Combustor [R]. ASME GT2007-27990, 2007.
  • 7Browne S. Object-Oriented Software for Reacting Flows [EB/OL]. [2011-05-10]. http://www.cantera.org.
  • 8Gregory P S, David M G. GRI-Mech 3.0 [EB/OL]. [2011- 05-12]. http: / /www.me.berkeley.edu/gri-mech/version30 /text30.htmi.
  • 9Fletcher T H. Time-Resolved Temperature Measurements of Individual Coal Particles During Devolatilization [J]. Combustion Science and Technology, 1989, 63(1-3), 89- 105.
  • 10Nsakala NY, Patel RL, Lao TC, Combustion and Gasi- fication Characteristics of Chars From Four Commer- cially Significant Coal of Different Rank [R]. CE Research Project AP-2601, Final Report for EPRI, 1982.

二级参考文献64

共引文献90

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部