期刊文献+

基于波段聚类的高光谱图像波段选择 被引量:12

Band Selection Based on Band Clustering for Hyperspectral Imagery
下载PDF
导出
摘要 为使无监督的波段选择能够更好地保留高光谱图像的信息,提出一种基于波段聚类的高光谱图像无监督波段选择方法.首先,计算高光谱图像各波段间的互信息,以此衡量各波段间的相关程度;然后,根据各波段间的互信息,对波段集合进行聚类;通过迭代使得各波段分组自动地聚集在信息量较大且具有代表性的波段周围,直到各聚类中心不再变化,则聚类结束.通过波段聚类过程保证了冗余波段的去除和有用信息的保留,最后,以各聚类中心波段作为所选的波段组合.实验结果证明,与传统方法相比,使用文中的方法选择波段,能够更有效地保留光谱信息,得到更高的分类精度. In order to preserve the information of hyperspectral imagery more effectively, an unsupervised band selection algorithm for hyperspectral imagery based on band clustering is proposed in this paper. Firstly, mutual information between every two bands is calculated to measure the degree of correlation. Then, clustering within bands is realized by calculating the mutual information. After iterative computation, the bands within the same class are clustered around the most important bands automatically, and the clustering operation stops until the clustering center does not change. As a consequence of clustering, the redundancy bands are removed while the useful information is retained. Finally, the selected band subsets are determined by the clustering centers. Experimental results show that compared with traditional methods, the band set obtained by the proposed method can preserve more spectral information effectively and acquire higher classification accuracy.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第11期1447-1454,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61071134) 高等学校博士学科点专项科研基金(20110071110018)
关键词 高光谱遥感图像 波段选择 波段聚类 hyperspectral imagery band selection band clustering
  • 相关文献

参考文献14

  • 1Chang C-I. Hyperspectral imaging: techniques for spectral detection and classification[M]. New York: Kluwer Academic, 2003.
  • 2Hughes G. On the mean accuracy of statistical pattern recognizers [J]. IEEE Transactions on Information Theory, 1986,14(1) :56-63.
  • 3Kumar S, Ghosh J, Crawford M M. Best-bases feature extraction algorithms for classification of hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(7): 1368-1379.
  • 4Serpico S B, Bruzzone L. A new search algorithm for feature selection in hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39 (7) : 1360-1367.
  • 5葛亮,王斌,张立明.基于偏最小二乘法的高光谱图像波段选择[J].计算机辅助设计与图形学学报,2011,23(11):1844-1852. 被引量:7
  • 6Chang C-I, Wang S. Constrained band selection for hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6) : 1575-1585.
  • 7Chang C-I, Du Q, Sun T-L, etal. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6) : 2631-2641.
  • 8刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:81
  • 9Martinez-Uso A, Pla F, Sotoca J M, et al. Clustering-based hyperspectral band selection using information measures [J]. IEEE Transactions on Geoseience and Remote Sensing, 2007, 45(12) : 4158-4171.
  • 10Peng H C, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max- relevance, and min-redundancy [J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2005, 27 (8): 1226-1238.

二级参考文献26

  • 1刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:81
  • 2Chang C I. Hyperspectral imaging: techniques for spectral detection and classification [M] New York: Plenum Press, 2003.
  • 3Hughes G. On the mean accuracy of statistical pattern recognizers [J]. IEEE Transactions on Information Theory, 1968, 14(1): 55-63.
  • 4Serpico S B, Bruzzone L. A new search algorithm for feature selection in hyperspectral remote sensing images[J]. IEEETransactions on Geoscience and Remote Sensing, 2001, 39 (7): 1360-1367.
  • 5Richards J A, Jia X P. Remote sensing digital image analysis: an introduction [M]. Cth ed. Berlin:Springer, 2006.
  • 6Yang H, Du Q, Su H J, et al. An efficient method for supervised hyperspectral band selection [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1): 138-142.
  • 7Chang C I, Du Q, Sun T L, et al. A joint band prioritization and band-decorrelation approach to band selection forhyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6): 2631-2641.
  • 8Arenas Garcia J, Camps-Vails G. Efficient kernel orthonormalized PLS for remote sensing applications [J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10) : 2872-2881.
  • 9Rosipal R, Krfimer N. Overview and recent advances in partial least squares [M] //Lecture Notes in ComputerScience. Heidelberg: Springer, 2006, 3940:34-51.
  • 10de Jong S. SIMPLS: an alternative approach to partial leastsquares regression [J]. Chemometrics and Intelligent Laboratory Systems, 1993, 18(3): 251-263.

共引文献86

同被引文献104

引证文献12

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部