期刊文献+

一种多策略认知诊断方法:MSCD方法的开发 被引量:14

A New Multiple-Strategies Cognitive Diagnosis Model:the MSCD Method
下载PDF
导出
摘要 当前国内外开发的认知诊断模型基本上只能处理单策略的测验情景,并假设所有被试均采用同一种加工策略/解题策略,从而忽视了加工策略的多样性及差异性。本研究根据de la Torre和Douglas(2008)采用多个Q矩阵来表征多个加工策略的思想,并结合使用丁树良等(2009)修正的Q矩阵理论及孙佳楠,张淑梅、辛涛和包珏(2011)的广义距离判别法,开发了一种新的多策略认知诊断方法——MSCD方法。Monte Carlo模拟研究结果表明:在单策略测验情景下,传统的单策略认知诊断方法与采用MSCD方法的诊断正确率均比较理想,且差异不大;但在多策略测验情景时,传统的单策略认知诊断方法诊断正确率较低,而MSCD方法的诊断正确率却仍较理想;当加工策略增至5种时,MSCD方法仍有较高的边际判准率、模式判准率以及加工策略判准率。研究表明MSCD方法基本合理、可行。这为实现对加工策略的诊断提供了方法学支持,有利于拓展认知诊断在实际中的应用。 Almost all of the current cognitive diagnosis models allow for single-strategy of problem solving, and assume all examinees use the same processing strategy. Based on the extant studies, the current study developed a new multiple-strategies cognitive diagnosis model, called MSCD method. Monte Carlo method was employed here to explore the feasibility of the MSCD method and to examine the estimation precision as well as the properties of the MSCD method. The findings were presented: (1) Under the single-strategy tests or data, the average attribute match ration (AAMR), pattern match ration (PMR) and strategy match ration (SMR) of the MSCD method were as high as those of single-strategy cognitive diagnosis model (single-strategy model). (2) Under multiple-strategy tests or data, the MSCD method also had high AAMR, PMR and SMR, but single-strategy model did not. (3) When the number of strategy reaching 5, the MSCD method also had very high AAMR, PMR and SMR. All in all, the new developing model, the MSCD method, was reasonable and could be accepted.
出处 《心理学报》 CSSCI CSCD 北大核心 2012年第11期1547-1553,共7页 Acta Psychologica Sinica
基金 国家自然科学基金(编号:31100756,31160203) 教育部人文社科项目(编号:09YJCXLX012,11YJC190002) 高等院校博士点基金项目(编号:20103604120001) 江西省教育厅高校人文社科项目(XL1011) 江西省教育厅科技项目(编号:GJJ10098) 江西师范大学青年英才培育资助计划
关键词 认知诊断 多策略认知诊断方法 加工策略 Q矩阵 cognitive diagnosis multiple-strategies cognitive diagnosis model processing strategy Q-matrix
  • 相关文献

参考文献14

  • 1de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
  • 2de la Torte, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353.
  • 3de la Torre, J., & Douglas, J. A. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73(4), 595-624.
  • 4丁树良,汪文义,杨淑群.认知诊断测验蓝图的设计[J].心理科学,2011,34(2):258-265. 被引量:70
  • 5丁树良,杨淑群,汪文义.可达矩阵在认知诊断测验编制中的重要作用[J].江西师范大学学报(自然科学版),2010,34(5):490-494. 被引量:82
  • 6丁树良,祝玉芳,林海菁,蔡艳.Tatsuoka Q矩阵理论的修正[J].心理学报,2009,41(2):175-181. 被引量:56
  • 7Fu, J., & Li, Y. (2008). Cognitively diagnostic psychometric models: An integrative review. ETS research report.
  • 8Hartz, S. M. (2002). A bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality. Unpublished doctoral dissertation, University of Illinois at Urbana - Champaign.
  • 9Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272.
  • 10Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka's rule-space approach. Journal of Educational Measurement, 41(3), 205-237.

二级参考文献54

  • 1戴海崎,张青华.规则空间模型在描述统计学习模式识别中的应用研究[J].心理科学,2004,27(4):949-951. 被引量:39
  • 2余嘉元.运用规则空间模型识别解题中的认知错误[J].心理学报,1995,27(2):196-203. 被引量:40
  • 3辛涛,焦丽亚.测量理论的新进展:规则空间模型[J].华东师范大学学报(教育科学版),2006,24(3):50-56. 被引量:21
  • 4Gierl, M. J. , Leighton, J. P. , &Hunka S. M. (2000). Exploring the logic of Tatsuoka's Rule - Space Model for test development and analysis. Educational Measurement: Issues and Practice, 19 , 34-44.
  • 5Kenneth,H.R.(2002).离散数学及其应用(袁崇义,屈婉玲,王捍贫,刘田译)(第4版).北京:北京机械工业出版社.
  • 6Leighton, J. P., Gierl, M. J., &Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: a variation on Tatsuoka' s rule - space approach. Journal of Educational Measurement,41 (3), 205-237.
  • 7Tatsuoka, K. K. (1983). Rule space: an approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement,20 (4), 345 - 354.
  • 8Tatsuoka, K. K. , &Tatsuoka, M. M. (1987). Bug Distribution and Statistical Pattern Classification. Psychometrika,52 (2), 193 - 206.
  • 9Tatsuoka, K. K. ( 1991 ). Boolean Algebra Applied to Determination of Universal Set of Knowledge States (Tech. Rep. RR -91 -44 - ONR). Princeton, N J: Education Testing Service.
  • 10Tatsuoka, K. K. (1995). Architecture of knowledge structure and cognitive diagnosis: a statistical pattern recognition and classification approach. In P. D. Nichols, S. F. Chipman &R. L. Brennan ( Eds. ), Cognitively Diagnostic Assessment (pp. 327-361). Hillsdale, NJ: Erlbaum.

共引文献132

同被引文献241

引证文献14

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部