摘要
利用重合度理论,获得了一类具有多个偏差变元的二阶中立型泛函微分方程(d^2)/(dt^2)(u(t)-(sum from j=1 to n)c_ju(t-r_j))=f(u(t))u′(t)+α(t)g(u(t))+(sum from j=1 to n)β_j(t)g(u(t-γ_j(t)))+p(t)周期解存在性的新的充分条件,改进了已有文献的相关结果.
By using a continuation theorem based on coincidence degree theory and inequality technique, some new sufficient conditions of periodic solutions are established for second-order neutral functional differential equation with multiple deviating arguments as follows
d^2/dt^2(u(t)-∑ j=1^ncju(t-rj))=f(u(t))u′(t)+α(t)g(u(t))+∑ j=1^nβj(t)g(u(t-rj(t)))+p(t)
The results have improved the related reports in the literatures.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第20期167-175,共9页
Mathematics in Practice and Theory
基金
国家自然科学基金(10671133)
关键词
偏差变元
二阶中立型泛函微分方程
周期解
重合度
deviating argument
second-order neutral functional differential equation
periodic solutions
coincidence degree