摘要
研究一类具高阶Laplace算子的高阶脉冲非线性中立型偏泛函微分方程的强迫振动性,利用Green公式和微分不等式方法将所讨论的脉冲中立型偏微分方程转化为脉冲中立型微分不等式的问题,获得了这类方程在三类不同边值条件下所有解强迫振动的若干充分条件.
In this paper, the forced oscillation of a class of higher order impulsive nonlinear neutral partial functional differential equations with higher order Laplace operator is studied. To reduce the discussed impulsive neutral partial differential equations to impulsive neutral differential inequalities via the Green's formula and the method of differential inequalities, some sufficient conditions for the forced oscillation of all solutions of such equations are obrained under three kinds of different boundary value conditions.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第20期176-183,共8页
Mathematics in Practice and Theory
基金
湖南省自然科学基金委员会与衡阳市政府自然科学联合基金(11JJ9002)
关键词
脉冲
非线性中立型
高阶偏泛函微分方程
强迫振动性
高阶LAPLACE算子
impulse
nonlinear neutral type
higher order partial functional differential equation
forced oscillation
higher order Laplace operator