期刊文献+

关于非协调Q_1^(rot)元可计算上界后验误差估计的一个注记

A Note on Computable Upper Bound a Posteriori Error Estimates for the Non-Conforming Rotated Ql Finite Element
原文传递
导出
摘要 通过数值试验发现Ainsworth建立的非协调Q_1^(rot)元可计算上界后误差估计指示子的可靠、有效性差.参照相关文献以及根据Q_1^(rot)元的性质,在Ainsworth建立的可计算上界后验误差估计框架下对插值后处理函数的构造和选取分别作了修改和更换,并相应获得可靠且有效的可计算上界后验误差估计,给出了三个不同类型的例子及其实验结果. This paper discovers the reliability and validity of the non-conforming rotated Q1 finite element computable upper bound a posteriori error estimate indicator established by M. Ainsworth are bad from the numerical experiments. Consulting the revelent paper and according to the property of the rotated Q1 element, this paper makes an modification for the construction of the interpolation post-processing and makes a replacement for the selection of the interpolation post-processing function under the framework established by M. Ainsworth, respectively, and obtains the reliable and effective computable upper bound a posteriori error estimates accordingly, and gives three different types of examples with experimental results.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第20期245-255,共11页 Mathematics in Practice and Theory
基金 国家自然科学基金(11161012) 贵州省科学技术基金(LKS[2010]No.01)
关键词 Q_1~rot元 可计算上界后验误差估计 数值实验 Q^rot 1 element, computable upper bound a posteriori error estimates, numericalexperiments
  • 相关文献

参考文献10

  • 1Ainsworth M. Robust a posteriori error estimation for nonconforming finite element approx-imation[J] SIAM J Numer Anal, 2003.
  • 2Ainsworth M. A posteriori error estimation for non-conforming quadrilateral finite elements[J]. Int J Numer Anal Model, 2005, 2(1): 1-18.
  • 3Ainsworth M. Corrigendum:A posteriori error estimation for non-conforming quadrilateral finite elements[J]. Int J Numer Anal Model, 2007, 4(1): 141-142.
  • 4Ainsworth M and Oden J T. A posteriori error estimation in finite element analysis[J]. Computer methods n applied mechanics and engineering, 1997, 42: 1-88.
  • 5CarstensenC, Hu J and OrlandoA. Framework for the a posteriori error analysis of non-conforming finite elements[J]. SIAM J Numer Anal, 2007, 45(1): 68-82.
  • 6Carstensen C, Hu J. A unifying theory of a posteriori error control for nonconforming finite element methods[J]. Numer Math, 2007.
  • 7Carstensen C, Bartels S and Jansche S. A posteriori error estimates for nonconforming finite element methods[J]. Numer Math, 2002, 92(2): 233-256.
  • 8Dari E, Duran R, Padra C and Vampa V. A posteriori error estimators for nonconforming finite element methods[J]. RAIRO Modl Math Anal Numr, 1996 30(4): 385-40.
  • 9Rannacher R and Turek S. Simple nonconforming quadrilateral Stokes element[J]. Numer Methods PDEs, 1992, 8(2): 97-IIi.
  • 10Hoppe R H W and Wohlmuth B. Element-oriented and edge-oriented local error estimators for aonconforming finite element methods[J]. RAIRO Modl Math Anal Numr, 30: 237-263, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部