期刊文献+

基于主元分析确定多变量系统控制极限的方法 被引量:2

Determining control limits of multivariate system based on principal component analysis
下载PDF
导出
摘要 针对存在多个稳定状态的多变量统计过程控制的控制极限问题,提出先分析系统变量的历史数据得到其经验分布,确定该变量的不同稳定状态及对应的状态域;将数据样本按不同的状态分组标准化后,分别进行主元分析,得到不同稳定状态下的Hotellings T2及平方预测误差SPE(Q)控制极限。用本方法和普通主元分析法对某钢铁公司局部蒸汽管网的流量数据模拟监控的效果进行对比,表明本方法由于区分不同状态,确定的Hotellings T2及平方预测误差SPE(Q)控制极限更精确,能有效降低漏报警和误报警的概率。 Aiming at the control limits problem of Multivariate Statistical Process Control(MSPC)which had multiple stable states,Empirical Distribution Function(EDF)was obtained by analyzing historical data of system variables,and different stable states as well as corresponding state-domains of variables were determined.After standardizing data samples in different state groups,Hotelling's T2 and Squared Prediction Error(SPE)(Q)control limits in different states were obtained by using Principal Component Analysis(PCA).Through comparison with traditional PCA in flow data monitoring for a steel corporation's local steam pipe network,the proposed method was more accurate on determining Hotelling's T2 and SPE(Q)control limits.It could reduce the probability of leaking alarm or false alarm effectively.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2012年第10期2231-2236,共6页 Computer Integrated Manufacturing Systems
基金 中国科学院知识创新工程重要方向性基金资助项目(KGCX2-EW-104-3) 国家自然科学基金资助项目(61064013)~~
关键词 主元分析 多变量过程控制 控制极限 经验分布 故障诊断 principal component analysis multivariate statistical process control control limit empirical distribution fault diagnosis
  • 相关文献

参考文献8

  • 1CHAND S T S. Estimating the limits for statistical processcontrol charts : a direct method improving upon the bootstrap[J]. European Journal of Operational Research,2007,178(2) ?472-481.
  • 2KUO H C W L. Comparisons of the symmetric and asymmet-ric control limits for X and R charts[J]. Computers Indus-trial Engineering, 2010,59(4) : 903-910.
  • 3周东华,李钢,李元,等.数据驱动的工业过程故障诊断技术——基于主元分析与偏最小二乘的方法[M].北京:科学出版社,2011.
  • 4WISE B M, RICKER N L, VELTKAMP D F, et al. A theo-retical basis for the use of principal component models for mo-nitoring mutivariate processes[J]. Process Control and Quali-ty,1990,1(1):41-51.
  • 5HASEBE M K S. Evolution of multivariate statistical processcontrol : application of independent component analysis and ex-ternal analysis [J]. Computers and Chemical Engineering,2004,28(6/7):1157-1166.
  • 6KRUGER R J T U. Dynamic multivariate statistical processcontrol using subspace identification [J]. Journal of ProcessControl,2004,14(3) :279-292.
  • 7KU W F? S R H. Disturbance detection and isolation by dy-namic principal component analysis[J]. Chemometrics and In-tellignet Laboratory System, 1995,30(1) : 179-196.
  • 8CHEN T. On reducing false alarms in multivariate statisticalprocess control [J]. Chemical Engineering Research and De-sign,2010,88(4) :430-436.

共引文献6

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部