期刊文献+

基于支持向量机的作业基础标准成本制定方法 被引量:4

Activity-based standard cost setting method based on support vector machine
下载PDF
导出
摘要 为解决传统标准成本制定过程中存在的主观经验性、不及时性和平均化带来的误差等问题,提出一种基于邻域粗糙集、随机分布理论和支持向量机的作业标准成本制定方法。首先通过邻域粗糙集理论进行属性约简,确定影响作业成本的属性因素,依据约简属性集从实例库中抽样并分析随机属性的分布规律,确定置信区间;然后用支持向量机建立随机属性和作业成本的回归模型,利用随机属性的置信区间确定作业标准成本的区间范围并最终确定作业标准成本值;最后建立作业标准成本的回归模型,预测小批量或新产品的标准成本。通过钢铁企业的应用实例,给出了该方法的具体实现过程,并验证了方法的有效性。 To solve problems of subjective experience,delay and inaccuracy caused by equalization in traditional standard cost determination,an activity-based standard cost setting method based on neighborhood rough set,random distribution and Support Vector Machine(SVM)was proposed.The attribute factors influencing activity cost was determined by using rough set theory to reduce.According to attribute reduction sets,the distribution of stochastic attributes was sampled and analyzed,and the confidence interval was obtained.The regression model of attributes and coset was built by SVM.By using confidence interval of stochastic attributes,the interval range of activity standard cost was set,and the activity standard cost was determined finally.The new standard cost regression model was built to predict the standard cost of small batch and new product.The implementation steps of this method were explained by its application in iron and steel enterprise,and the validity of this method was verified.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2012年第10期2287-2296,共10页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(61034003 70872014)~~
关键词 标准成本制定 粗糙集 随机分布 支持向量机 作业 standard cost setting rough set random distribution support vector machine activity
  • 相关文献

参考文献15

二级参考文献44

共引文献311

同被引文献44

  • 1杨世元,吴德会,苏海涛.基于PCA和SVM的控制图失控模式智能识别方法[J].系统仿真学报,2006,18(5):1314-1318. 被引量:18
  • 2昝涛,费仁元,王民.基于神经网络的控制图异常模式识别研究[J].北京工业大学学报,2006,32(8):673-676. 被引量:13
  • 3雷英杰.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2004.
  • 4BAIK J W,KANG H W,KANG C W,et al. The optimal con- trol limit of a G-EWMAG control chart[J]. The International Journal of Advanced Manufacturing Technology, 2011,56 (1) : 161-175.
  • 5FATEMIGHOMI S M T, LESANY S A. Recognition of un natural patterns in process control charts through combining two types neural networks[J]. Applied Soft Computing, 2011 (11) :5444-5456.
  • 6WAFIK H, AHMED G. A survey of control-chart pattern- recognition literature(1991-2010) based on a new conceptual classification scheme[J]. Computers & Industrial Engineering,2012,63(1):204-222.
  • 7HASSAN A, NABIBAKSH M S, SHAHAROUN A M, et al. Improved SPC chart pattern recognition using statistical features[J]. International Journal of Production Research, 2003,41(7) :1587-1603.
  • 8HU Qinghua, YU Daren, XIE Zongxia. Neighborhood clas- sifiers[J]. Expert Systems with Applications, 2008, 34 (2) : 866-876.
  • 9VAHID R, ATA E, REZA G. Application of the PSO - SVM model for recognition of control chart patterns[J]. ISA Transactions, 2010,49 (4) : 577-586.
  • 10COOPER R, KAPLAN R S. How cost accounting distorts product costs[J]. Management Accounting, 1988, 69(10): 20-27.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部