期刊文献+

基于稀疏互质L型阵列的二维测向算法 被引量:9

Two-dimentional direction finding using a sparse coprime L-sharped array
下载PDF
导出
摘要 在阵元数确定的情况下,稀疏阵列能增大阵列孔径,提高测向精度,但也带来测向模糊。针对这个问题,提出了一种稀疏互质L型阵列及其二维测向算法。利用四阶累积量的阵列扩展特性,并结合L型阵列中阵元间距的互质关系,在稀疏阵列结构下实现无模糊二维测向。与二维虚拟旋转不变算法相比,所提算法允许参考阵元间距大于信号半波长,从而提高了测向精度,同时利用逐步解模糊,保证较大的系统容差。计算机仿真结果验证了算法的有效性。 The sparse array with determined elements can increase the array aperture to improve two-dimentional direction-of-arrival (2D-DOA)accuracy, but it brings direction finding ambiguity too. To solve this problem, A sparse coprime L- shaped array and two-dimensional direction finding algorithm based on it are presented. The proposed algorithm utilizes the array extending capability of fourth-order cumulant and the coprime relationship between the interelement spacings in L- shaped array so that 2D-DOA without ambiguity can be realized under sparse array structure. Compared with two-dimentional virtual-ESPRIT algorithm, the proposed algorithm allows the spacings between the reference elements more than one-half wavelength,which leads to improve directi'on finding accuracy. Meanwhile, the larger system tolerance is guaranteed by a step-by-step reduction of the number of ambiguities. Computer simulation results verify the effectiveness of the proposed algorithm.
出处 《电波科学学报》 EI CSCD 北大核心 2012年第5期886-891,共6页 Chinese Journal of Radio Science
基金 南京理工大学自主科研专项计划资助项目(No.2010ZDJH05) 部预研基金(No.9140A07010809BQ0205) 高等学校博士学科点专项科研基金(No.20113219110018)
关键词 稀疏互质 L型阵列 二维波达角估计 四阶累积量 sparse coprime L-sharped arrays 2D-DOA fourth-order cumulant
  • 相关文献

参考文献15

  • 1DOGANCAY K. Relationship between geometric translations and TLS estimation bias in bearings-only target localization [J]. IEEE Transactions on Signal Processing, 2008,56 (3) :1005-1017.
  • 2DOGANCAY K. Exploiting geometric translations in TLS based robot localization from landmark bearings [C]// 17th European Signal Processing Conference. Glasgow, Scotland, 24-28August, 2009 : 95-99.
  • 3RAO S K, RAJESWARI K R, LINGAMURTY K S. Unscented Kalman filter with application to hearings only target tracking [ J ]. IETE Journal of Research,2009, 55(2) 63-67.
  • 4CHAN A Y J, LITVA J. MUSIC and maximum tech niques on two-dimensional DOA estimation with uni- form circular array[J]. IEE Proceedings Radar, Sonar and Navigation,1995, 142(3) : 105-114.
  • 5KEDIA V S, CHANDNA B. A new algorithm for 2-- D DOA estimation[J]. Signal Process, 1997, 60 (3): 325-332.
  • 6LIU T H, MENDEL J M. Azimuth and elevation di- rection finding using arbitrary array geometries [J]. IEEE Transactions on Signal Processing, 1998,46 (7) : 2061-2065.
  • 7DOGAN M C,MENDEL J M. Applications of cumula- nts to array processing-part I: aperture extension and array calibration[J]. IEEE Transactions on Signal Pro- cessing, 1995, 43(5) :1200-1216.
  • 8齐子森,郭英,王布宏,王永良.基于四阶累积量的共形阵列波达方向估计算法[J].电波科学学报,2011,26(4):735-744. 被引量:4
  • 9沈怡平,滕升华.基于四阶累积量的稳健盲波束形成算法[J].电波科学学报,2008,23(6):1056-1060. 被引量:9
  • 10刘学斌,韦岗,季飞.基于四阶累积量扩展孔径的线阵设计[J].电波科学学报,2006,21(1):126-130. 被引量:4

二级参考文献33

  • 1刘宏清,廖桂生,张杰.稳健的Capon波束形成[J].系统工程与电子技术,2005,27(10):1669-1672. 被引量:12
  • 2R Roy, T Kailath. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Trans. Acoustics, Speech, Signal Processing, 1989, 37(7): 984-995.
  • 3M C Dogan, J M Mendel. Application of cumulants to array processing-Part Ⅰ: Aperture extension and array calibration[J]. IEEE Trans. Signal Processing, 1995, 43(5) : 1200-1216.
  • 4C D Seligson. Comments on high resolution frequency-wavenumher spectrum analysis [J]. Proc. IEEE, 1970,58(6): 947-949.
  • 5H Q Liu, G S Liao, J Zhang. A Robust Adaptive Capon Beamforming [J]. Signal Processing, 2006, 86 (10) : 2820-2826.
  • 6JOSEFSSON L P. Persson Conformal array antenna theory and design [M]. Canada: Wiley-IEEE Press, 2006.
  • 7WORMS J G . Super resolution with conformal broad- band antenna arrays [C]//Proc. 2002 IEEE Radar Conf. Long Beach, CA, 2002.. 425-431.
  • 8DO-HONG T, FISCH W, RUSSER P. Direction finding using spectral estimation with arbitrary anten- na arrays[C]//Proceedings of IEEE MTT-S Interna- tional Microwave symposium Digest . 2001: 1387- 1390.
  • 9HWANG S, SARKAR T K. Direction of Arrival (DOA) estimation using a transformation matrix through singular value decomposition[C]//Proceed- ings of IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetic , 2005: 353-356.
  • 10YANG Peng, YANG Feng, NIE Zaiping. DOA esti- mation with sub-array divided technique and interpola- ted ESPRIT algorithm on a cylindrical conformal array antenna [J]. Progress in Electromagnetics Research, 2010, 103: 201-216.

共引文献13

同被引文献84

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部