期刊文献+

正交设计优化蛛丝蛋白复合纳米纤维的研究 被引量:3

Research on the optimization of spider silk protein composite nanofiber by orthogonal design
下载PDF
导出
摘要 通过正交实验,对影响静电纺丝制备蛛丝蛋白复合纳米纤维的5个主要因素(溶剂体系、纺丝液浓度、电压、挤出速度和接收距离)在3个水平上进行优化筛选。以纤维直径和形貌为考察目标,结合极差分析、方差分析,获得最佳纺丝工艺条件:V(甲酸)/V(三氯甲烷)=6/4、纺丝液质量浓度为0.10g/mL、电压为14kV、挤出速度为0.8mL/h、接收距离为12cm。在5个因素中,接收距离和溶剂体系对纤维直径的影响最为显著。采用正交设计实验,简化了实验设计,且有根据地建立和设计出需要结果的实验条件,对利用静电纺丝技术来制备应用于血管组织工程的三维结构可控的蛛丝蛋白复合纳米纤维有着重要的意义。 Electrospinning initiates an explosion of the field of vascular tissue engineering with its pursuit of three-dimensional porous nano-fibrous scaffolds. The orthogonal design is employed to investigate the influence of five main parameters, including solvent system, solution concentration, voltage, extruding speed and spinning distance, on the diameters and morphologies of electrospun spider silk protein composite nanofiber fibers through optimizing screening tests at three levels. By means of range analysis and variance analysis, the opti- mum conditions are as follows, solvent system of formic acid/chloroform 6/4, spinning mass concentration of 0.10g/mL, voltage of 14kV, extruding rate of 0.8mL/h and spinning distance of 12cm. Among the five fac- tors, the spinning distance and solvent system are the most significant factor to the fiber diameter. Orthogonal design not only simplifies the experimental process but also build an accordance with the required experimental :onditions, highlights the electrospinning design to prepare controlled three-dimensional structure of spider silk protein composite nanofibers in the vascular tissue engineering.
作者 张超颖 李敏
出处 《功能材料》 EI CAS CSCD 北大核心 2012年第22期3152-3157,共6页 Journal of Functional Materials
基金 福建省科学技术厅重点资助项目(2010Y0020)
关键词 静电纺丝 蛛丝蛋白 正交实验 复合纳米纤维 形貌 electrospinning spider silk protein orthogonal test composite nanofibers morphology
  • 相关文献

参考文献6

二级参考文献48

共引文献32

同被引文献21

  • 1Onuma Y, Daemen J, Kukreja N, et al, Revascularization in the high-risk patient: mu|ti'essel disease[]]. Minerva Cardioanglol 2007, 55:579 - 592.
  • 2Basaran O, Karakayali H, Emiroglu R, et al. Complications and long-term follow-up of 4416 vascular access procedures [ J ]. Transplant Proe, 2003, 35:2578 - 2579.
  • 3Allmeling C, Jokuszies A, Reimers K, et al. Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration [J]. Cell Prolif, 2008, 41 (3) : 408 -420.
  • 4Wang Hongxin, Xue Zhengxiang, Wei Meihong, et al. A novel scaffold from recombinant spider silk protein in tissue engineering [ J ]. Advanced Materials Research, 2011, 152 - 153 : 1734 - 1744.
  • 5Xiang Ping, Li Min, Zhang Chaoying, et al. Cytocompatibility of electrospun recombinant spider silk protein/polycaprolactone/ gelation composite tubular scaffolds for small diameter tissue engineering blood vessels [ J]. Int J Biol Macromol, 2011, 49 (3) : 281 -288.
  • 6Zhao Liang, Chen Denglong, Wei Meihong, et al. Preparation of a recombinant spider silk protein/pcl blend submicrofibrnus mat and cytocompatibility [ J ]. Polymers & Polymer Composites, 2013, 21(2) :61 -68.
  • 7Meng J, Kong H, Han Z, et al. Enhancement of nanofibrous scaffold of muhiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis [ J]. J Biomed Mater ResA, 2009, 88(1) :105 - 116.
  • 8Rayatpisheha S, Heathb DE, Shakouric A, et al. Combining cell sheet technology and electrospun scaffolding forengineered tubular, aligned, and contractile blood vessels [ J ]. Biomaterials, 2014, 35(9): 2713-2719.
  • 9Hardy JG, Geissler SA, Aguilar D Jr, et al. Instructive conductive 3D silk foam-based bone tissue scaffolds enable electrical stimulation of stem cells for enhanced osteogenic differentiation [ J ]. Macromol Biosci, 2015.
  • 10Zhang W, Wray LS, Rnjak-Kovacina J, et al. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration [ J ]. Biomaterials. 2015, 56 : 68 - 77.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部