期刊文献+

带有缺失数据的结构方程模型中的模型选择问题 被引量:3

Model Selection of Structural Equation Models with Missing Data
原文传递
导出
摘要 结构方程模型在社会学、教育学、医学、市场营销学和行为学中有很广泛的应用。在这些领域中,缺失数据比较常见,很多学者提出了带有缺失数据的结构方程模型,并对此模型进行过很多研究。在这一类模型的应用中,模型选择非常重要,本文将一个基于贝叶斯准则的统计量,称为L_v测度,应用到此类模型中进行模型选择。最后,本文通过一个模拟研究及实例分析来说明L_v测度的有效性及应用,并在实例分析中给出了根据贝叶斯因子进行模型选择的结果,以此来进一步说明该测度的有效性。 Structural equation models are widely used in social, educational, medical, marketing, and behavioral sciences. In these fields, missing data are commonly encountered. To deal with this problem, structural equation models with missing data have been proposed. In the application of this kind of models, one of the most important issues is model selection. In this paper, we proposed an alternative Bayesian criterion-based method called the Lv measure for model selection of structural equation models with missing data. A simulation study and a real example are presented to demonstrate the efficiency and the application of the Lv measure, and results based on Bayes factor in the real example are also presented to illustrate the performance of the Lv measure for model selection.
出处 《数理统计与管理》 CSSCI 北大核心 2012年第6期1010-1021,共12页 Journal of Applied Statistics and Management
基金 国家自然科学基会资助项目(10761011)
关键词 缺失数据 贝叶斯方法 模型选择 MCMC算法 missing data, Bayesian approach, model selection, MCMC algorithm
  • 相关文献

参考文献12

  • 1李云鹏,吴必虎.基于结构方程模型的旅游网站使用者满意度量的比较研究[J].数理统计与管理,2007,26(4):589-594. 被引量:18
  • 2Kass R E, and Raftery A E. Bayes factors [J]. Journal of the American Statistical Association, 2001, 90: 773-795.
  • 3Gelman A, and Meng X L. Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling[J]. Statistical Science, 1998, 13:163 -185.
  • 4Lee S Y, and Song X Y. Model comparison of nonlinear structural equation models with mixed covariates [J]. Psychometrika, 2003, 68: 27-47.
  • 5Ibrahim J G, Chen M H, and Sinha D, Criterion based methods for Bayesian model assessment [J], Statistica Sinica, 2001, 11: 419-443.
  • 6Rubin D B. Inference and missing data. Biometrika [J], 1976, 63: 581-592.
  • 7Ibrahim J G, Chen M H, and Lipsitz S R. Missing responses in generalized linear mixed models when the missing data mechanism is nonignorable [J]. Biometrika, 2001, 88:551- 564.
  • 8Lee S Y, and Tang N S. Bayesian analysis of nonlinear structural equation models with nonignorable missing data[J]. Psychometrika, 2006, 71: 541-564.
  • 9Geman S, and Geman D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6: 721-741.
  • 10Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, and Teller E, Equations of state calculations by fast computing machine [J]. Journal of Chemical Physics, 1953, 21: 1087-1091.

二级参考文献6

共引文献17

同被引文献230

引证文献3

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部