期刊文献+

基于后验概率的图像模糊检测方法 被引量:5

Blurring detection in image forensics based on posterior probability
下载PDF
导出
摘要 数字图像被动盲取证是指在不依赖任何预签名提取或预嵌入信息的前提下,对图像的真伪和来源进行鉴别和取证。图像在经篡改操作时,为了消除图像在拼接边缘产生的畸变,篡改者通常会采用后处理消除伪造痕迹,其中,模糊操作是最常用的手法之一。提出一种人工模糊痕迹检测方法。将经过模糊操作后图像像素之间存在的高度相关性进行模型化表示;采用EM算法估算出图像中每个像素属于上述模型的后验概率;根据所得后验概率的大小进行模糊操作检测。实验结果表明,该算法能够有效地检测出篡改图像中的人工模糊痕迹,并对不同模糊类型、有损JPEG压缩以及全局缩放操作均具有较好的鲁棒性。 Digital image passive blind forensic techniques aim to examine the authenticity and sources of digital images without relying on any pre-extraction or pre-embedded information. While the image is tampered, in order to eliminate the visual edge distortion caused by splicing, some post-processing operations are usually employed to eliminate the tampering traces. Among them, blurring operation is one of the most commonly used approaches. In this paper, a novel method which can detect manual blurring in the tampered image is proposed. A model of the high correlation of pixels in an artificially blurred image is proposed. EM algorithm is adopted to estimate the posterior probability that a pixel belongs to this model. The value of the posteriori probability is used for detecting the trace of blurring opera- tion. Experimental results show that this method can effectively detect manual blurring in a tampered image and al- so has a good robustness against different blurring type, lossy JPEG compression, and global scale operation as well.
出处 《计算机工程与应用》 CSCD 2012年第32期181-186,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.60862003) 科技部国际合作项目(No.2009DFR10530) 贵州省工业科技攻关项目(No.黔科合GY字(2010)3054) 教育部高等院校博士点基金(No.20095201110002) 贵州大学研究生创新基金(No.2012035)
关键词 数字图像盲取证 人工模糊检测 后验概率估计 digital image blind forensics manual blurring detection posterior probability estimation
  • 相关文献

参考文献12

  • 1Friedman G L.The trustworthy digital camera:restoring credibility to the photographic image[J].IEEE Transactions on Consumer Electronics,1993,39(4):905-910.
  • 2Popescu A C.Statistical tools for digital image forensics[C]//Proceedings of the6th International Workshop on Infor-mation Hiding,New York,2004:128-147.
  • 3周琳娜,王东明.数字图像取证技术[M].北京:北京邮电大学出版社,2007.
  • 4Tong Hanghang.Blur detection for digital images using wavelet transform[C]//Proc of2004IEEE Int Conf on Mul-timedia and Expo.Piscataway,NJ:IEEE,2004:17-20.
  • 5Hsiao D Y.Detecting digital tampering by blur estimation[C]//Proc of IEEE1st Int Workshop on Systematic Approaches to Digital Forensic Engineering.Piscataway,NJ:IEEE,2005:264-278.
  • 6王波,孙璐璐,孔祥维,尤新刚.图像伪造中模糊操作的异常色调率取证技术[J].电子学报,2006,34(B12):2451-2454. 被引量:39
  • 7周琳娜,王东明,郭云彪,杨义先.基于数字图像边缘特性的形态学滤波取证技术[J].电子学报,2008,36(6):1047-1051. 被引量:45
  • 8王伟,方勇.基于二次模糊相关性的单通道置换图像盲分离[J].应用科学学报,2011,29(2):169-175. 被引量:12
  • 9GONZALEZ R C,WOOD R E. 数字图像处理[M].2 版. 北京: 电子工业出版社,2007:175.
  • 10Yang Benjuan,Zuo Juxian,Liu Benyong,et al.Blur detection in image forensics using linear correlation of pixels[C]//Chinese Conference on Pattern Recognition,Chongqing,2010.

二级参考文献24

  • 1张晓冬,王桥,吴乐南.利用脊的特征进行信号盲分离[J].电子学报,2004,32(7):1156-1159. 被引量:7
  • 2王波,孙璐璐,孔祥维,尤新刚.图像伪造中模糊操作的异常色调率取证技术[J].电子学报,2006,34(B12):2451-2454. 被引量:39
  • 3Lyu Siwei. Natural Image Statistics for Digital Image Forensics[ D]. USA : Department of Computer Science, Dartmouth College, 2005.
  • 4Hany Farid. Creating and Detecting Doctored and Virtual Images: Implications to the Child Pornography Prevention Act[R]. USA: Department of Computer Science, Dartmouth College, 2004.
  • 5Alin C. Popescu, Hany Farid. Statistical tools for digital forensics[ A]. 6th International Workshop on Information Hiding,LNCS vol. 3200 [ C ]. New York : Springer-Verlag, Berlin-Heidelberg ,2004.128 - 147.
  • 6Alin C Popescu, Hany Farid. Exposing Digital Forensics by Detecting Duplicated Image Regions [ R ]. USA: Department of Computer Science, Dartmouth College, 2004.
  • 7Tian-Tsong NG, Shih-Fu Chang. Blind Detection of Photomonrage Using Higher Order Statistics[ DB/OL]. http://www, ee.columbia, edu/dvmm/, Jan, 2004.
  • 8Tian-Tsong NG, Shih-Fu Chang. A model for image splicing[ A ]. IEEE Conference Proceedings on Image Processing[ C ].New York. IEEE Press, 2004.1169 - 1172.
  • 9Fridrich J, Soukal D, Lukas J. Detection of Copy-move Forgery in Digital Images [ DB/OL ]. http://www, ws. binghamton,edu/fridrich/publications, html, 2004.
  • 10刘文锋.基于图像连续性的数字图像取证技术研究[D].大连:大连理工大学,2005.

共引文献101

同被引文献46

  • 1王波,孙璐璐,孔祥维,尤新刚.图像伪造中模糊操作的异常色调率取证技术[J].电子学报,2006,34(B12):2451-2454. 被引量:39
  • 2Luo Weiqi, Huang Fangjun, Huang Jiwu. Edge adaptive image steg- anography based on LSB matching revisited. IEEE Trans Inf Forensics Security, 2010, 5(2) :201-214.
  • 3Fridrich J, Goljan M. Practical steganalysis of digital images: state of the art. In: Proe SPIE, 2002:1-13.
  • 4Westfeld A, Pfitzmann A. Attacks on steganographic systems. In: Proc 3rd Int Workshop on Information Hiding, 1999:61-76.
  • 5Fridrich J, Goljan M, Du R. Detecting LSB steganography in color, and gray-scale images. IEEE Multimedia, 2001 , 8 (4) :22-28.
  • 6Dumitrescu S, Wu X, Wang Z. Detection of LSB steganography via sample pair analysis. IEEE Trans Signal Processing, 2003 , 51 ( 7 ) : 1995-2007.
  • 7Fridrich J, Goljan M. On estimation of secret message length in LSB steganography in spatial domain. In : Proc SPIE, 2004 , 5306 (6) : 23 -34.
  • 8Ker D A, Bfihme R. Revisiting weighted stego-image steganalysis. In: Proc SPIE, 2008, 6819(5): 501-517.
  • 9Fillatre L Adaptive steganalysis of least significant bit replacement in grayscale natural images. IEEE Trans Signal Processing, 2012, 60 (2) :556-569.
  • 10冈萨雷斯数字图像处理.阮秋琦,阮宇智,等译.北京:电子工业出版社,2007.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部