期刊文献+

用固相外延方法制备Si_(1-x-y)Ge_xC_y三元材料 被引量:3

Preparation of Si_(1-x-y)Ge_xC_y Alloy Layers by SPER\+*
下载PDF
导出
摘要 分析了 Si1- x- y Gex Cy 三元系材料外延生长的特点 ,指出原子性质上的巨大差异使 Si1- x- yGex Cy 材料的制备比较困难 .固相外延生长是制备 Si1- x- y Gex Cy 的有效方法 ,但必须对制备过程各环节的条件进行优化选择 .通过实验系统地研究了离子注入过程中温度条件的控制对外延层质量的影响以及外延退火条件的选择与外延层结晶质量的关系 .指出在液氮温度下进行离子注入能够提高晶体质量 ,而注入过程中靶温过高会导致动态退火效应 ,影响以后的再结晶过程 .采用两步退火方法有利于消除注入引入的点缺陷 ,而二次外延退火存在着一个最佳退火温区 .在此基础上优化得出了固相外延方法制备 Si1- x- y Gex Cy/Si材料的最佳条件 . The epitaxial growth of Si_(1-x-y)Ge_xC_y materials,which is very difficul t because of the great (difference) between the characteristics of C,Si and G e at oms,is studied.The Solid Phase (Epitaxial) Recrystallization (SPER)i s pr oved to be an effective method to make this kind of semiconductors,though the conditions during the preparation process must be optimized.Experimental result s show that the film (qualities) are greatly affected by the ion-implantation tem perature as well as the epitaxial annealing (temperature.) The ion-implantati on ex ecuted at liquid nitrogen temperature will improve the quality of the materials, while a higher ion-implantation temperature leads to an active annealing ef fect that may obviously affect the quality of the epitaxial layers.Two-step an n ealing is favorable to diminish the point defects introduced by ion-implantatio n ,and there exists the best temperature region for recrystallization during the se cond annealing step.The optimized conditions for the formation of ternary Si_(1-x-y)Ge_xC_y alloy layers by SPER is finally obtained.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2000年第9期862-866,共5页 半导体学报(英文版)
基金 国家自然科学重大基金资助项目!编号 698762 60&&
关键词 Si1-x-yGexCy材料 固相外延 三元系 半导体材料 Si_(1-x-y)Ge_xC_y alloys SPER
  • 相关文献

参考文献4

  • 1司俊杰,半导体学报,1999年,19卷,477页
  • 2Herbots N,Appl Phys Lett,1996年,68卷,782页
  • 3Lu X,Appl Phys Lett,1996年,69卷,1915页
  • 4Fukami A,Appl Phys Lett,1990年,57卷,2345页

同被引文献51

  • 1[1]SHIN J H,LEE W H,HAN H S.1.54 μm Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices[J].Appl Phys Lett,1999,74(11):1 573-1 575.
  • 2[2]XIE Y H,FITZGERALD E A,MII Y J.Evaluation of erbium-doped silicon for optoelectronic applications[J].J Appl Phys,1991,70(6):3 223-3 228.
  • 3[4]CANHAM L T,BARRACLOUCH K G,ROBBINS D J.1.3 μm light-emitting diode from silicon electron irradiated at its damage threshold[J].Appl Phys Lett,1987,51(19):1 509-1 511.
  • 4[7]KROMER H.Polar-on-nonpolar epitaxy[J].J Crystal Growth,1987,81(1):193-204.
  • 5[8]NAKAMURA S,MUKAI T,SEROH M.Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J].Appl Phys Lett,1994,64(13):1 687-1 689.
  • 6[9]LIU H,FRENKEL A C,KIM J G,et al.Growth of zinc blende-GaN on β-SiC coated (001) Si by molecular beam epitaxy using a radio frequency plasma discharge,nitrogen free-radical source[J].J Appl Phys,1993,74(10):6 124-6 127.
  • 7[10]MORKOC H,STRITE S,GAO G B,et al.Large-band-gap SiC,Ⅲ-Ⅴ nitride,and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J].J Appl Phys,1994,76(3):1 363-1 398.
  • 8[11]AKASAKI I,AMANO H,KOIDE Y,et al.Effects of an buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAIxN(0 [12]CANHAM L T.Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J].Appl Phys Lett,1990,57(10):1 046-1 048.
  • 9[17]Zhang Yu heng,Xin Jian Li,Lei Zheng,et al.Nondegrading Photoluminescence in Porous Silicon[J].phys Rev Lett,1998,81(8):1 710-1 713.
  • 10[18]LIAO L S,BAO X M,YANG Z F,.et al.Intense blue emission from porous β-SiC formed on C+-implanted silicon [J].Appl Lett,1995,66(8):2 382-2 384.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部