摘要
分析了基于神经网络数据融合的目标跟踪的算法 ,指出了传统的融合算法计算量大 ,神经网络目标向量不易选取等缺点。提出了一种简化的算法。应用理论分析和蒙特卡洛仿真方法 ,对标准卡尔曼滤波算法和简化的滤波算法进行比较 ,并给出了均方根误差的统计值。该简化算法原理简单 ,数据处理量小 ,速度快 ,误差小 ,特别适用于多传感器的处理 ,将融合结果反馈给单传感器 ,可提高各单传感器的跟踪精度。
This paper analyzes the algorithm of target tracking based on neural network data fusion, explains some shortcoming of the traditional fusion algorithm; such as large quantity of calculation and the difficult selection of target vectors of neural network, and proposes the simplified algorithm. The theoretical anaylsis and Monte Carlo simulation methods are used to compare the traditional fusion algorithm with the new one. The simplified algorithm is simple in principle, less in data, faster in processing and less in error. The simplified algorithm is suitable for the multisensors. The feedback of the fusion result to the single sensor can enhance the single sensor′s precision.
出处
《系统工程与电子技术》
EI
CSCD
2000年第8期82-84,共3页
Systems Engineering and Electronics
关键词
数据融合
目标跟踪
神经网络
Data processing Kalman filtering Algorithm\ \ Target tracking