期刊文献+

Adaptive Neuro-Fuzzy Inference System for Thermal Field Evaluation of Underground Cable System

Adaptive Neuro-Fuzzy Inference System for Thermal Field Evaluation of Underground Cable System
下载PDF
导出
摘要 The influence of thermal circuit parameters on a buried underground cable is investigated using an ANFIS (adaptive neuro-fuzzy inference system). Finite element solution of the heat conduction equation is used, combined with artificial intelligence methods. The cable temperature depends on several parameters, such as the ambient temperature, the currents flowing through the conductor and the resistivity of the surrounding soil. In this paper, ANFIS is used to simulate the problem of the thermal field of underground cables under various parameters variation and climatic conditions. The developed model was trained using data generated from FEM (finite element method) for different configurations (training set) of the thermal field problem. After training, the system is tested for several scenarios, differing significantly from the training cases. It is shown that the proposed method is very time efficient and accurate in calculating the thermal fields compared to the relatively time consuming finite element method; thus ANFIS provides a potential computationally efficient and inexpensive predictive tool for more effective thermal design of underground cable systems.
出处 《Journal of Energy and Power Engineering》 2012年第10期1643-1650,共8页 能源与动力工程(美国大卫英文)
关键词 Underground cables AMPACITY thermal analysis finite element method adaptive neuro-fuzzy inference system. 自适应神经模糊推理系统 电缆系统 热场 ANFIS 评估 有限元法 计算效率 热传导方程
  • 相关文献

参考文献22

  • 1S.R. Jang, T.C. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall, Upper Saddle River, NJ, 1997.
  • 2C.T, Lin, C.S. Lee, Neural Fuzzy Systems: A Neuro Fuzzy Synergism to Intelligent Systems, Prentice Hall, Upper Saddle River, NJ, 1996.
  • 3M. Setnes, R. Babuska, H.B. Verbruggen, Transparent fuzzy modeling, lnt. J. Hum. Comput. Stud. 49 (1998) 159-179.
  • 4G.J. Anders, M.A. El-Kady, Transient ratings of buried power cables. r. Historical perspective and mathematical model, IEEE Trans. Power Delivery 7 (1992) 1724-1734.
  • 5G.C. Thomann, T. Aabo, lE.C. Bascom, A.R. Ghafurian, T. Mckernan, A Fourier transform technique for calculating cable and pipe temperatures for periodic and transient conditions, IEEE Trans. Power Delivery 6 (1991) 1345-1351.
  • 6M.A. Hanna, A.Y. Chikhani, M.M.A. Salama, Thermal analysis of power cable systems in a trench in multi-layered soil, IEEE Trans. Power Delivery 13 (1998) 304-309.
  • 7G. Gela, J.J. Dai, Calculation of thermal fields of underground cables using the boundary element method, IEEE Trans. Power Delivery 3 (1988) 1341-1347.
  • 8D.J. Swaffield, P.L. Lewin, S.J. Sutton, Methods for rating directly buried high voltage cable circuits, IET Gener. Transm. Distrib. 2 (3) (2008) 393-401.
  • 9M. Rachek, S.N. Larbi, Magnetic eddy-current and thermal coupled models for the finite-element behavior analysis of underground power cables, IEEE Trans. Magn. 44 (12) (2008) 4739-4746.
  • 10M.S. Al-Saud, M.A. El-Kady, R.D. Findlay, A new approach to underground cable performance assessment, Electr. Power Syst. Res. 78 (2008) 907-918.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部