期刊文献+

求解Helmholtz方程的新型稀疏近似逆预条件算法

A New Approximate Inverse Preconditioning Algorithm for Solving Helmholtz Equation
下载PDF
导出
摘要 提出了一种新型预条件算法,用于对有限元法离散Helmholtz方程所产生的大型稀疏复对称且高度不定的线性系统进行高效迭代求解。该新型预条件子是在复拉普拉斯偏移算子的基础上结合改进的稀疏近似逆算法来得到。通过改善矢量有限元线性系统自身的谱特性,该预条件算法既可避免迭代中的不稳定情况,同时也能较大提高迭代求解效率。数值结果表明,与若干常用预条件算法相比,所提出的预条件算法更加有效。 A new preconditioning algorithm is presented for effectively solving the large complex symmetric and always highly indefinite linear equations arising from the finite element method(FEM) discretizing Helmholtz equation.The proposed preconditioner is constructed by combing the complex shifted Laplace(CSL) operator with a modified AINV(MAINV) approximate inverse algorithm.By improving the FEM linear system's eigenvalue spectrum,the proposed preconditioner can avoid most of the breakdowns during the iterative process,and enhance the solving efficiency.Numerical examples demonstrate the proposed preconditioning algorithm is more effective than some standard ones.
出处 《半导体光电》 CAS CSCD 北大核心 2012年第5期663-666,共4页 Semiconductor Optoelectronics
基金 四川省教育厅科研基金项目(09ZC016 10226020)
关键词 预条件 拉普拉斯偏移算子 稀疏近似逆 有限元 preconditioner CSL operator AINV finite element
  • 相关文献

参考文献8

  • 1Jin J M. Finite Element Method in Electromagnetics [M]. New York Wiley Sons, 1993.
  • 2Saad Y. Iterative Methods for Sparse Linear System [M]. Boston: PWS Pub. Co. ,1996.
  • 3Van der Vorst H A, Melissen J B M. A Petrov- Galerkin type method for solving Ax = b where A is symmetric complex[J]. IEEE Trans. on Magnetics, 1990,26(2) :706-708.
  • 4Benzi M. Preconditioning techniques for large linear systems: A survey[J]. J. Phys. Comput. ,2002,182: 418-477.
  • 5Benzi M,Tuma M, Cullum J K. Robust approximate inverse preconditioning for the conjugate gradient method [J]. Society for Industrial and Applied Mathematics J. Sei. Comput. , 2000, 22 (4): 1318- 1332.
  • 6Li Y H,Nie Z P, Meng M, et al. An efficient MAINV preconditioned COCG method for FEM analysis of millimeter wave filters [J]. J. Infrared Milli Terahz Waves,2011,32(2) :216-224.
  • 7Erlangga Y A, Oosterlee C W, Vuik C. A novel multigrid based preconditioner for heterogeneous Helmholtz problems [J]. Society for Industrial and Applied Mathematics J. Sci. Comput. , 2006,27 (4) 1471-1492.
  • 8Ise K, Inoue K, Koshiba M. Three-dimensional finite element method with edge elements for_electromagnetic waveguide discontinuities[J]. IEEE Trans. Microwave Theory Technol. , 1991,39 : 1289-1295.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部