期刊文献+

过渡金属氧化物自旋和电荷相关信息存储

Spin and charge related data storage in transition metal oxides
原文传递
导出
摘要 信息技术的快速发展在某种程度上要求有高速度和大容量的非易失存储器.然而,随着晶体管尺度达到其量子极限,传统硅半导体器件的继续集成化发展遇到了瓶颈.因此,人们提出了一系列有潜力成为下一代更具功能性的存储器原型器件,并引起了广泛而持续的研究热潮.本文介绍3种基于新材料和新结构的新型存储原型器件:阻变开关器件、有机自旋阀和多铁隧道结.我们发现通过改变界面态,可将阻变式开关器件的反应速度提高数个量级,达到5ns;在实验上确认了超精细相互作用对自旋阀效应的影响;利用多铁隧道结实现了室温下的四重阻态存储.基于自旋、电荷相关信息存储的原理和实验结果,我们对这3种过渡金属氧化物器件目前还存在的问题及未来的应用前景进行了分析和讨论. Rapid developments in information technology rely to some extent on the high speed and large capacity of nonvolatile memories.However,as transistor dimensions reach quantum regime,the diminishing scaling benefit makes conventional semiconducting devices encounter insurmountable bottlenecks.A number of potential alternatives have been proposed and extensively studied to obtain more powerful and functional nonvolatile memory devices.In this article,several candidates based on new materials,structures and properties of prototype devices,such as resistance switching(RS) device,organic spin valve(OSV) and multiferroic tunneling junction(MFTJ),are reported.It is noted that the response time of RS prototype device was increased by several orders to 5 ns through manipulating the interface state of the system;the crucial role of hyperfine interaction in OSV was experimentally confirmed by isotope effect;and room temperature four-resistive device was achieved in MFTJ.In addition,the current issues and future researches for promising spin,charge related data storage in transition metal oxides are discussed on the basis of these experimental results.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2012年第11期1185-1195,共11页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(批准号:50832007 51021091 11179008) 国家重点基础研究发展计划(编号:2012CB922003 2009CB929502)资助项目
关键词 阻变存储器件原型 自旋阀 多铁性 隧道结 resistance switching spin valve multiferroic tunneling junction
  • 相关文献

参考文献1

二级参考文献40

  • 1R.Ramesh;N.A.Spaldin.查看详情[J],Nature Materials2007(01):21.
  • 2J.A.Hutchby;R.Cavin;V.Zhirnov;J.E.Brewer;and G.Bourianoff.查看详情[J],Computer2008(05):28.
  • 3J.Ma;J.M.Hu;Z.Li;C.W.Nan.查看详情[J],Advanced Materials2011(09):1062.
  • 4J.P.Velev;S.S.Jaswal;E.Y.Tsymbal.查看详情[J],Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences20113069.
  • 5J.S.Moodera;L.R.Kinder;T.M.Wong;R.Meservey.查看详情[J],Physical Review Letters1995(16):3273.
  • 6L.Esaki;R.B.Laibowitz;P.J.Stiles.查看详情[J],IBM Technical Disclosure Bulletin19712161.
  • 7D.A.Tenne;A.Bruchhausen;N.D.Lanzillotti-Kimura;A.Fainstein;R.S.Katiyar;A.Cantarero;A.Soukiassian;V.Vaithyanathan;J.H.Haeni;W.Tian;D.G.Schlom;K.J.Choi;D.M.Kim;C.B.Eom;H.P.Sun;X.Q.Pan;Y.L.Li;L.Q.Chen;Q.X.Jia;S.M.Nakhmanson;K.M.Rabe;and X.X.Xi.查看详情[J],Science2006(5793):1614.
  • 8D.D.Fong;G.B.Stephenson;S.K.Streiffer;J.A.Eastman;O.Auciello;P.H.Fuoss;and C.Thompson.查看详情[J],Science2004(5677):1650.
  • 9C.Lichtensteiger;J.M.Triscone;J.Junquera;P.Ghosez.查看详情[J],Physical Review Letters2005(04):047603.
  • 10E.Y.Tsymbal;H.Kohlstedt.查看详情[J],Science2006(5784):181.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部