摘要
In order to improve the eavesdropping detection efficiency in a two-step quantum direct communication protocol, an improved eavesdropping detection strategy using the four-particle cluster state is proposed, in which the four-particle cluster state is used to detect eavesdroppers. During the security analysis, the method of the entropy theory is introduced, and two detection strategies are compared quantitatively using the constraint between the information that the eavesdropper can obtain and the interference that has been introduced. If the eavesdroppers intend to obtain all information, the eavesdropping detection rate of the original two-step quantum direct communication protocol using EPR pair block as detection particles will be 50%; while the proposed strategy's detection rate will be 75%. In the end, the security of the proposed protocol is discussed. The analysis results show that the eavesdropping detection strategy presented is more secure.
In order to improve the eavesdropping detection efficiency in a two-step quantum direct communication protocol, an improved eavesdropping detection strategy using the four-particle cluster state is proposed, in which the four-particle cluster state is used to detect eavesdroppers. During the security analysis, the method of the entropy theory is introduced, and two detection strategies are compared quantitatively using the constraint between the information that the eavesdropper can obtain and the interference that has been introduced. If the eavesdroppers intend to obtain all information, the eavesdropping detection rate of the original two-step quantum direct communication protocol using EPR pair Mock as detection particles will be 50%; while the proposed strategy's detection rate will be 75%. In the end, the security of the proposed protocol is discussed. The analysis results show that the eavesdropping detection strategy presented is more secure.
基金
supported by the National Natural Science Foundation of China (61100205)
关键词
检测策略
通信协议
窃听
量子
团簇
粒子
安全性分析
基础
quantum direct communication
four-qubit cluster state
eavesdropping detection
protocol security
dense coding scheme