期刊文献+

Theoretical analysis of reactive solid-liquid interfacial energies 被引量:4

Theoretical analysis of reactive solid-liquid interfacial energies
原文传递
导出
摘要 The characterization of reactive solid-liquid interfacial energies and solid surface energies is a pressing problem in materials science and surface science. Based on the concept that unbalanced forces doing work, a mathematical formulation between surface energies and interfacial energies for reactive wetting is presented. The resulting formalism has significant generality in which the equilibrium Young's equation for solid-liquid interfacial energies is just a special case. It is shown that a solid-liquid interfacial energy at non-equilibrium is always higher than that at equilibrium, and that the transformation of reactive interfaces to equilib-rium interfaces is an inevitable, spontaneous process. The numerical range of solid-liquid interfacial energies γsl for a limited, solid-liquid interfacial wetting system was calculated to be 0 ≤γsl ≤γsg. The calculation methods for reactive solid-liquid interfacial energies and solid surface energies are presented. They are significant for composite materials and weld, powder sinter, package of electronic devices, and other surface and interfacial issues in metallurgy. The characterization of reactive solid-liquid interfacial energies and solid surface energies is a pressing problem in materials science and surface science. Based on the concept that unbalanced forces doing work, a mathematical formulation between surface energies and interfacial energies for reactive wetting is presented. The resulting formalism has significant generality in which the equilibrium Young's equation for solid-liquid interfacial energies is just a special case. It is shown that a solid-liquid interfacial energy at non-equilibrium is always higher than that at equilibrium, and that the transformation of reactive interfaces to equilib- rium interfaces is an inevitable, spontaneous process. The numerical range of solid-liquid interfacial energies N1 for a limited, solid-liquid interfacial wetting system was calculated to be 0 ≤ Ys1≤ Ysg. The calculation methods for reactive solid-liquid interfacial energies and solid surface energies are presented. They are significant for composite materials and weld, powder sinter, package of electronic devices, and other surface and interfacial issues in metallurgy.
出处 《Chinese Science Bulletin》 SCIE CAS 2012年第34期4517-4524,共8页
基金 supported by the National Natural Science Foundation of China (50471007) the Natural Science Foundation of Fujian Province,China (2011J01292)
关键词 界面能 反应性 固体表面能 表面科学 不平衡力 粉末烧结体 材料科学 数学公式 reactive interface solid-liquid interfacial energy wettability nonequilibrium Young's equation surface tension
  • 相关文献

参考文献5

二级参考文献35

  • 1汤伟,朱定一,陈丽娟,关翔锋.基于分子动力学结合神经网络的Au表面能计算方法[J].中国有色金属学报,2005,15(1):105-109. 被引量:2
  • 2朱定一,戴品强,罗晓斌,张远超.润湿性表征体系及液固界面张力计算的新方法(Ⅰ)[J].科学技术与工程,2007,7(13):3057-3062. 被引量:69
  • 3陈传煊.表面物理化学[M].北京:科学技术文献出版社,1995.12-83.
  • 4Garner WE.[J]. J ChemSoc, 1947, 1239-1244.
  • 5Stalder A F, Kulik G, Sage D, et al. A snake-based approach to accurate determination of both contact points and contact angles [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2006, 286(1-3):92-103.
  • 6Rhee S K.[J]. J Am Ceram Soc, 1972, 55(6) :300-303.
  • 7许并社.材料界面的物理化学[M].北京:化学工业出版社,2006,107-116.
  • 8Mcnally R N, Yeh H C, et al. [J]. Journal of Materials Science, 1968, 3(2) : 136-138.
  • 9Lee J, Nakamoto M, Tanaka T. Thermodynamic study on the melting of nanometer-sized goid particles on graphite substrate [J]. Journal of materials science, 2005, 40(9-10) : 2167-171.
  • 10Sang hoon Junga, Takashi Ishikawab, Hideo Nakaee. Critical eonditions for formation of spheroidal graphite[J]. Mater Sci Eng A (2007), doi: 10. 1016/j. msea. 2007.07. 013.

共引文献92

同被引文献27

  • 1Be'er A,Lereah Y,Taitelbaum H. Reactive wetting of Hg-Ag system at room temperature [J]. Materials Science and Engineering: A,2008,495(1-2) : 102-107.
  • 2Be'er A,Lereah Y,Hecht I,et al. The roughness and growth of a silver-mercury reaction interface [J]. Physica A:Statistical Mechanics and its Applications,2001,302(1-4):297-301.
  • 3Aksay I A,Hoge C E,Pask J A. Wetting under chemical equilibrium and nonequilibrium conditions [J]. J. Phys. Chem, 1974,78(12) : 1178-1183.
  • 4Eustathopoulos N. Dynamics of wetting in reactive metal/ceramic systems[J]. Acta Materialia, 1998,46(7): 2319-2327.
  • 5Espie L,Drevet B ,Eustathopoulos N. Experimental study of the in fuluence of interracial energies and reactivity on wetting in metal/oxide system [J]. Metallurgical and Materials Transactions A, 1994,25(3) :599-605.
  • 6Voinov O V. Hydrodynamics of wetting [J]. Fluid Dynamics, 1976.11(5):714-721.
  • 7Cox R G. The dynamics of the spreading of liquids on a solid surface. Partl. Viscous flow [J]. Journal of Fluid Mechanics, 1986,168 : 169-194.
  • 8Eyring H. Viscosity Plasticity and Diffusion as Examples of Absolute Reaction Rates [J]. The journal of physical chemistry. A, 1936,4(4) : 283-291.
  • 9Blake T D,Haynes J M. Kinetics of liquid/liquid displacement [J]. Journal of Colloid and Interface Science,1969,30 (3): 421-423.
  • 10Blake T D,Ruischak K J. A maximum speed of wetting[J]. Nature, 1979,282(5738): 489-491.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部