期刊文献+

一种基于压缩感知的二维几何信号压缩方法 被引量:3

A 2-D Geometric Signal Compression Method Based on Compressed Sensing
下载PDF
导出
摘要 本文给出的压缩方法属于谱压缩方法.谱压缩方法是一种常用的二维轮廓线模型压缩方法.文章从压缩感知的角度解释了谱压缩方法,并提出了基于压缩感知的二维轮廓线模型压缩方法.首先利用二维轮廓线模型Laplace算子的特征向量构造了一组基.二维轮廓线模型的几何结构在这组基下可以被稀疏表达.利用随机矩阵对二维轮廓线模型的几何结构抽样,完成压缩.恢复过程中,通过最优化1–范数,实现几何信号的恢复.实验结果表明,该方法压缩速度快,比例高,恢复效果好,适合对大型数据以及远距离数据进行压缩. Spectral compression method is a commonly used compression method in the field of two-dimensional contour model compression. This paper explains the spectral compression method from the perspective of compressed sensing and provides a compression method of two-dimensional contour model based on compressed sensing. Constructing a basis using Laplace operator of the two-dimensional contour model, we get the sparse representation of the 2-D geometric signal based on this basis. We complete compressing the two-dimensional contour model by sampling the two-dimensional contour model geometry information based on a random matrix. In the recovery process, we reconstruct the 2-D geometric signal through optimizing 1-norm of the sparse signal. Experimental results show that the compression ratio of this method is high, the restore effect is good, and it is suitable for large-scale data compression.
出处 《自动化学报》 EI CSCD 北大核心 2012年第11期1841-1846,共6页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)前期研究专项(2011CB311802)资助~~
关键词 压缩感知 几何信号 随机抽样 稀疏表达 Compressed sensing, geometric signal, random sampling, sparse representation
  • 相关文献

参考文献15

  • 1Bhat P, Zitnick C L, Cohen M, Curless B. GradientShop: a gradient-domain optimization framework for image and video filtering. ACM Transactions on Graphics, 2010, 29(2): 1-14.
  • 2Zhou K, Gong M M, Huang X, Guo B N. Data-parallel oc- trees for surface reconstruction. IEEE Transactions on Vi- sualization and Computer Graphics, 2010, 17(5): 669-681.
  • 3Marchesin S, Chen C K, Ho C, Ma K L. View-dependent streamlines for 3D vector fields. IEEE Transactions on Visu- alization and Computer Graphics, 2010, 16(6): 1578-1586.
  • 4Zhou Kun. Digital Geometry Processing: Theory and Ap- plications [Ph.D. dissertation], Zhejiang University, China, 2002.
  • 5Weinkauf T, Theisel H. Streak lines as tangent curves of a derived vector field. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1225-1234.
  • 6Farbman Z, Hoffer G, Lipman Y, Cohen-Or D, Lischinski D. Coordinates for instant image cloning. ACM Transactions on Graphics, 2009, 28(3): 1-9.
  • 7Karni Z, Gotsman C. Spectral compression of mesh geome- try. In: Proceedings of the 27th annual conference on Com- puter graphics and interactive techniques. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co, 2009. 279 -286.
  • 8Khodakovsky A, SchrSeder P, Sweldens W. Progressive ge- ometry compression. In: Proceedings of the 27th annual con- ference on Computer graphics and interactive techniques. New York, NY, USA: ACM Press/Addison-Wesley Publish- ing Co, 2000. 271-278.
  • 9Gu X F, Gortler S J, Hoppe H. Geometry images. ACM Transactions on Graphics, 2002, 32(3): 355-361.
  • 10Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

同被引文献32

引证文献3

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部