期刊文献+

基于Boosting的集成k-NN软件缺陷预测方法 被引量:7

Boosting-Based k-NN Learning for Software Defect Prediction
原文传递
导出
摘要 软件缺陷预测是改善软件开发质量,提高测试效率的重要途径.文中提出一种基于软件度量元的集成k-NN软件缺陷预测方法.首先,该方法在不同的Bootstrap抽样数据集上迭代训练生成一个基本k-NN预测器集合.然后,这些基本预测器分别对软件模块进行独立预测,各基本预测值将被融合生成最终的预测结果.为判别新的软件模块是否为缺陷模块,设计分类阈值的自适应学习方法.集成预测结果大于该阈值的模块将被识别为缺陷模块,反之则为正常模块.NASAMDP及PROMISEAR标准软件缺陷数据集上的实验结果表明集成k-NN缺陷预测的性能较之广泛采用的对比缺陷预测方法有较明显的提高,同时也证明软件度量元在缺陷预测中的有效性. Timely identification of defective modules improves both software quality and testing efficiency. A software metrics-based ensemble k-NN algorithm is proposed for software defect prediction. Firstly, a set of base k-NN predictors is constructed iteratively from different bootstrap sampling datasets. Next, the base k-NN predictors estimate the software module independently and their individual outputs are combined as the composite result. Then, an adaptive threshold training approach is designed for the ensemble to classify new software modules. If the composite result is greater than the threshold value, the software module is recognized as defective, otherwise as normal. Finally, the experiments are conducted on NASA MDP and PROMISE AR datasets. Compared with a widely referenced defect prediction approach, the results show the considerable improvements of the ensemble k-NN and prove the effectiveness of software metrics in defect prediction.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第5期792-802,共11页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.90718024)
关键词 软件缺陷预测 k-近邻(k-NN) 软件度量元 集成学习 Software Defect Prediction, k Nearest Neighbor (k-NN), Software Metric, EnsembleLearning
  • 相关文献

参考文献16

  • 1Nikora A, Munson J. Developing Fault Predictors for Evolving Soft- ware Systems//Proc of the 9th International Software Metrics Sym- posium. Sydney, Australia, 2003:338-350.
  • 2Nagappan N, Ball T. Static Analysis Tools as Early Indicators of Prerelease Defect Density// Proc of the 27th International Confer- ence on Software Engineering. St. Louis, USA, 2005:580-586.
  • 3Menzies T, Greenwald J, Frank A. Data Mining Static Code Attrib- utes to Learn Defect Predictors. IEEE Trans on Software Engineer- ing, 2007, 33(1): 2-13.
  • 4Lessmann S, Baesens B, Mues C, et al. Benchmarking Classifica- tion Models for Software Defect Prediction: A Proposed Framework and Novel Findings. IEEE Trans on Software Engineering, 2008, 34 (4) : 485-496.
  • 5Khoshgoftaar T M, Seliya N. Analogy-Based Practical Classification Rules for Software Quality Estimation. Empirical Software Engineer-ing, 2003, 8(4) : 325-350.
  • 6Emam K E, Benlarbi S, Goel N, et al. Comparing Case-Based Rea- soning Classifiers for Predicting High Risk Software Components. Journal of Systems and Software, 2001,55 (3) : 301-320.
  • 7Turhan B, Bener A. Analysis of Naive Bayes' Assumptions on Soft- ware Fault Data: An Empirical Study. Data and Knowledge Engi- neering, 2009, 68(2) : 278-290.
  • 8Khoshgoftaar T M, Allen E B, Hudepohl J P, et al. Application of Neural Networks to Software Quality Modeling of a Very Large Tele- communications System. IEEE Trans on Neural Networks, 1997, $ (4) : 902-909.
  • 9Zheng Jun. Cost-Sensitive Boosting Neural Networks for Software Defect Prediction. Expert Systems with Applications, 2010, 37 (6) : 4537-4543.
  • 10Selby R W, Porter A A. Learning from Examples: Generation and Evaluation of Decision Trees for Software Resource Analysis. IEEE Trans on Software Engineering, 1988, 14(12) : 1743-1757.

同被引文献42

  • 1杨学兵,张俊.决策树算法及其核心技术[J].计算机技术与发展,2007,17(1):43-45. 被引量:87
  • 2邵堃,刘宗田,胡学钢,李心科.AML:一种面向需求的多Agent建模语言[J].模式识别与人工智能,2007,20(1):131-137. 被引量:4
  • 3王立宏.面向测试过程的软件可信性度量[D].西安:西安邮电大学,2013:22-24.
  • 4Xiang Zhuoyuan, Tang Zhitao. Research of SoftwareDetect Prediction Model Based on Gray Theory[C]//IEEE Management and Service Science2009. USAWashington DC:IEEE Computer Society,2009 :20-22.
  • 5Zhu Dianqin, Wu Zhongyuan. The Application of Gray-Prediction Theory in the Software Defect Management[C]//IEEE Computational Intelligence and SoftwareEngineering 2009. USA Washington DC: IEEE Com-puter Society,2009 : 11-13.
  • 6Halkidi M,Spinellis D,Tsatsaronis G,et al.Data mining in software engineering[J].Intelligent Data Analysis,2011,15:413-441.
  • 7Xie T,Thummalapenta S,Lo D,et al.Data mining for software engineering[J].IEEE Computer,2009,42:55-62.
  • 8Kalsi M,Singh J.A hybrid approach of module sequence generation using neural network for software architecture[J].International Journal of Science and Research,2013,2(5):133-137.
  • 9Singh Y,Kaur A,Malhotra R.Software fault proneness prediction using support vector machines[C]//Proceedings of the World Congress on Engineering,2009:1-6.
  • 10Varade S M,Ingle M D.Overview of software fault prediction using clustering approaches and tree data structure[J].The International Journal of Engineering and Science,2012,1:239-242.

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部