期刊文献+

基于免疫原理的不确定数据流聚类算法 被引量:2

Clustering Uncertain Data Streams Based on Immune Principle
原文传递
导出
摘要 提出一种基于免疫原理、对不确定数据流进行聚类的算法——IUMicro.IUMicro针对不确定数据流上元组级不确定性问题,引入动态更新以适应数据变化的免疫模型,其中包括一种有效的在线收集数据流统计信息的B细胞特征结构及其更新策略.为兼顾元组存在概率与元组间的距离两方面因素,定义概率识别半径,为每个不断到达的数据元组找到合理的候选簇.离线聚类根据免疫细胞识别区域的空间关系,进行任意形状的无监督聚类.实验结果表明,IUMicro能有效抑制噪声,具有良好的聚类质量和较快的处理速度. An algorithm based on immune principle, named IUMicro, is proposed to cluster uncertain data streams. IUMicro applies a dynamically updated immune model to adapt to the data streams. An effective B-cell feature vector and updating strategy are used to collect statistical information of data streams on line by this model. To choose the optimal candidate cluster for each increasing tuple in the data stream, IUMicro defines a probability radius of a B-cell' s recognition zone to address both uncertainty and distance metric. The offline clustering is an arbitrary-shape unsupervised clustering based on immune B-cells' spatial relationship between regions. The experimental results show that IUMicro effectively suppresses noise and gains better clustering quality at a high processing speed.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第5期826-834,共9页 Pattern Recognition and Artificial Intelligence
基金 福建省自然科学基金项目(No.2010J01329) 福建省高校产学研合作科技重大项目(No.2010H6012)资助
关键词 免疫原理 不确定数据流 聚类 概率识别半径 Immune Principle, Uncertain Data Stream, Clustering, Probabilistic Radius of Recognition
  • 相关文献

参考文献3

二级参考文献63

  • 1常建龙,曹锋,周傲英+.基于滑动窗口的进化数据流聚类[J].软件学报,2007,18(4):905-918. 被引量:61
  • 2Cormode G, Garofalakis M. Sketching probabilistic data streams. In: Chan CY, Ooi BC, Zhou A, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Beijing: ACM Press, 2007. 281-292.
  • 3Jayram TS, McGregor A, Muthukrishan, Vee E. Estimating statistical aggregates on probabilistic data streams. In: Libkin L, ed. Proc. of the 26th ACM SIGMOD-SIGACT-SIGART Symp. Principles of Database Systems. Beijing: ACM Press, 2007. 243-252.
  • 4Jayram TS, Kale S, Vee E. Efficient aggregation algorithms for probabilistic data. In: Bansal N, Pruhs K, Stein C, eds. Proc. of the 18th Annual ACM-SIAM Syrup. on Discrete Algorithms (SODA). New Orleans: SIAM, 2007. 346-355.
  • 5Aggarwal CC, Han J, Yu PS. A framework for clustering evolving data streams. In: Freytag JC, Lockmann PC, Abiteboul S, Carey MJ, Seling PG, Heuer A, eds. Proc. of the Int'l Conf. on Very Large Data Bases. Berlin: Morgan Kaufmann Publishers, 2003. 81-92.
  • 6Dalvi N, Suciu D. Efficient query evaluation on probabilistic databases. In: Nascimento MA, Ozsu MT, Kossmann D, Miller RJ, Blakeley JA, Schiefer KB, eds. Proe. of the VLDB. Toronto: Morgan Kaufmarm Publishers, 2004. 864-875.
  • 7Burdick D, Deshpande PM, Jayram TS, Ramakrishnan R, Vaithyanathan S. OLAP over uncertain and imprecise data. In: Bohm K, Jensen CS, Haas LM, Kersten ML, Larson P, Ooi BC, eds. Proc. of the Int'l Conf. on Very Large Data Bases. Trondheim: ACM Press, 2005.970-981.
  • 8Sarma AD, Benjelloum O, Halevy A, Widom J. Working models for uncertain data. In: Liu L, Reuter A, Whang KY, Zhang J, eds. Proc. of the 22nd Int'l Conf. on Data Engineering. Atlanta: IEEE Computer Society, 2006.
  • 9Cheng R, Kalashnikov D, Prabhakar S. Querying imprecise data in moving object environments. IEEE Trans. on Knowledge and Data Engineering, 2004,16(9):1112-1127.
  • 10Ngai WK, Kao B, Chui CK, Cheng R, Chau M, Yip KY. Efficient clustering of uncertain data. In: Cliton CW, Zhong M, Liu JM, Wah BW, Wu XD, eds. Proc. of the 6th IEEE Int'l Conf. on Data Mining. Hong Kong: IEEE Computer Society, 2006. 436-445.

共引文献45

同被引文献17

  • 1谷峪,于戈,张天成.RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267. 被引量:54
  • 2Pan S, Wu K, Zhang Y, et al. Classifier ensemble foruncertain data stream classification[C]. Proc of the 14thPacific-Asia Conf on Knowledge Discovery and DataMining. Boston: Harvard Business School Press, 2010:488-495.
  • 3Gao C, Wang J. Direct mining of discriminative patternsfor classifying uncertain data[C]. Proc of the 16th ACMSIGKDD Int Conf on Knowledge Discovery and DataMinding. New York: Free Press, 2010: 861-870.
  • 4Qin B, Xia Y, Wang S, et al. A novel bayesian classificationfor uncertain data[J]. Knowledge-Based System, 2011,24(7): 1151-1158.
  • 5Aggarwal C, Yu P S. A framework for clustering uncertaindata streams[C]. Proc of the 24th IEEE Int Conf on DataEngineering. Canc ′un: Canc ′un Press, 2008: 150-159.
  • 6Pang S, Ban T, Kadobayashi Y, et al. Personalizedmode transductive spanning svm classification tree[J].Information Sciences, 2011, 181(4): 2071-2085.
  • 7Shaker A, Senge R, Hllermeier E. Evolving fuzzypattern trees for binary classification on data streams[J].Inforamtion Sciences, 2012, 19(2): 34-51.
  • 8Salton G, Fox E A, Wu H. Extended Boolean informationretrieval[J]. Commun ACM, 1983, 26(11): 1022-1036.
  • 9Nandedkar A V, Biswas P K. A granular reflex fuzzy min-max neural network for classification[J]. IEEE Trans onNeural Networks, 2009, 20(7): 1117-1134.
  • 10Leite D, Ballini R, Costa P, et al. Evolving fuzzy granularmodeling from non-stationary fuzzy data streams[J].Evolving Systems, 2012, 3(1): 65-79.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部