期刊文献+

模型不确定非线性Markov跳变系统的滤波算法

Filter algorithm for nonlinear Markov jump systems with uncertain models
原文传递
导出
摘要 针对模型不确定非线性Markov跳变系统,提出一种新的滤波算法.相比于传统交互多模型粒子滤波,该方法通过引入前一时刻的滤波误差来增强原先由于不精确模型而造成权值较小的真实粒子在滤波过程中的作用,以此来改善算法的估计性能.仿真结果表明,该方法在处理含不确定模型参数的非线性Markov跳变系统状态估计问题时具有较好的性能. Considering the state estimation problem for the nonlinear Markov jump system with uncertain model,a novel filtering algorithm is proposed.Compared with the traditional interacting multiple particle filter method,in this method,a term of filtering error at previous time instant is introduced to increase the effect of the particles which are true but with small weights due to the inaccuracy model to improve the estimation performance in the filtering process.Simulation results show the effectiveness of this method in handling with the state estimation problem for the nonlinear Markov jump systems with uncertain model parameter.
作者 赵顺毅 刘飞
出处 《控制与决策》 EI CSCD 北大核心 2012年第11期1616-1620,共5页 Control and Decision
基金 国家自然科学基金项目(60974001) 中央高校基本科研业务费专项资金项目(JUDCF11039)
关键词 模型不确定性 非线性Markov跳变系统 状态估计 model uncertainties nonlinear Markov jump system state estimation
  • 相关文献

参考文献16

  • 1Mazor E, Averbuck A, Bar-Shalom Y, et al. Interacting multiple model methods in target tracking: A survey[J]. IEEE Trans on Aerospace and Electronic Systems, 1998, 34(1): 103-123.
  • 2Logothetis A, Krishnamurthy V. Expectation maximization algorithms for MAP estimation of jump Markov linearsystems[J]. IEEE Trans on Signal Processing, 1999, 47(8): 2139-2156.
  • 3Mendel J M. Maximum-likelihood deconvolution: A journey into model-based signal processing[M]. New York: Sprirtger-Verlag, 1990: 10-25.
  • 4Blom H, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients[J]. IEEE Trans on Automatic Control, 1988, 33(8): 780-783.
  • 5Tugnait J K. Adaptive estimation and identification for discrete systems with Markov jump parameters[J]. IEEE Trans on Automatic Control, 1982, 27(5): 1054-1065.
  • 6Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Trans on Signal Processing, 2001, 49(3): 613-624.
  • 7胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 8Shao X G, Huang B, Lee J M. Constrained Bayesian state estimation - A comparative study and new particle filter based approach[J]. J of Process Control, 2010, 20(2): 143- 157.
  • 9Blom H, Bloem A. Exact Bayesian and particle filtering of stochastic hybrid systems[J]. IEEE Trans on Aerospace and Electronic Systems, 2007, 43(1): 55-69.
  • 10Moreland M R, Challa S. Maneuvering target tracking in clutter using particle filters[J]. IEEE Trans on Aerospace and Electronic Systems, 2005, 41(1): 252-270.

二级参考文献1

共引文献292

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部