期刊文献+

带容量约束车辆路由问题的改进蚁群算法 被引量:15

Improved ant colony algorithm for capacitated vehicle routing problems
原文传递
导出
摘要 提出一种带容量约束车辆路由问题(CVRPs)的改进蚁群算法.该算法使用一种新的蚂蚁位置初始化方式,增加了蚂蚁走出最优路径的可能性.在搜索过程中,以客户之间路径的节省量作为启发式信息.信息素更新采用一种动态更新的方法,能够根据当前车辆所构建路径的情况对信息素进行更新,避免算法陷入停滞状态.局部搜索除使用2-opt方法外,针对不同车辆访问的客户,还增加了交换搜索和插入搜索以扩大搜索范围.仿真实验验证了所提出算法的有效性. An improved ant colony algorithm is proposed for capacitated vehicle routing problems(CVRPs).A new initialization of vehicle’s position with an optimal and random selection increases the possibility of obtaining the optimal path.In the process of searching,the ants are more sensitive to the optimal path,because the saving path among customers is chosen as the heuristic information.The method of local and global dynamic phenomenon update is used in order to adjust the distribution of phenomenon according to vehicle routes.Except the method of 2-opt,insertion and exchange search methods are also used to expand the scope of the search for the clients on different vehicle visits.The simulation results show the effectiveness of the proposed algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2012年第11期1633-1638,1643,共7页 Control and Decision
基金 国家自然科学基金项目(61074092) 山东省自然科学基金项目(ZR2010FM019) 山东省科技发展计划项目(2008GGB01192)
关键词 车辆路由 路径规划 蚁群算法 带容量约束车辆路由问题 vehicle routing problem path plannin ant colony algorithm CVRPs
  • 相关文献

参考文献12

  • 1Laporte G, Mercure H, Nobert Y. A branch and bound algorithm for a class of asymmetrical vehicle routing problem[J]. The J of Operational Research Society, 1992, 43(5): 469-481.
  • 2Baker B M, Ayechew M A. A genetic algorithm for the vehicle routing problem[J]. Computers and Operations Research, 2003, 30(5): 787-800.
  • 3Wang C H, Lu J Z. A hybrid genetic algorithm that optimizes capacitated vehicle routing problems[J]. Expert Systems with Applications, 2009, 36(2): 2921-2936.
  • 4Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, Man and Cybernetics: Part B, 1996, 26(1): 29-41.
  • 5Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach for the traveling salesman problem[J]. IEEE Trans on Evolutionary Computation, 1997,1(1): 53-66.
  • 6Bullnheimer B, Hartl R F, Strauss C. Applying the ant system to the vehicle routing problem[C]. Advances and Trends in Local Search Paradigms for Optimization. Boston: Kluwer, 1998: 109-120.
  • 7Bullnheimer B, Hartl R F, Strauss C. An improved ant system for the vehicle routing problem[J]. Annals of Operations Research, 1999, 89:319-328.
  • 8Bell J E, McMullen P R. Ant colony optimization techniques for the vehicle routing problem[J]. Advanced Engineering Informatics, 2004, 18(1): 41-48.
  • 9Gajpal Y, Abad P L. Multi-ant colony system(MACS) for a vehicle routing problem with backhauls[J]. European J of Operational Research, 2009, 196(1): 102-117.
  • 10Chen C H, Ting C J. An improved ant colony system algorithm for the vehicle routing problem[J]. J of theChinese Institute of Industrial Engineer, 2006, 23(2): 115- 126.

同被引文献140

引证文献15

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部