期刊文献+

利用期望-最大化算法实现基于动态词典的压缩感知 被引量:3

An EM-based Approach for Compressed Sensing Using Dynamic Dictionaries
下载PDF
导出
摘要 在现有压缩感知(CS)理论中,重构信号需要预设其稀疏表示词典。对于以参数化模型表示的信号,只能预知该词典为某种形式的参数化词典,参数的具体取值难以确定。若将参数设定为取值空间的均匀离散格点,预设词典与真实词典之间的失配将使传统CS重构方法的性能严重恶化。为解决这一问题,该文提出一种基于动态词典的CS重构方法。通过迭代地优化词典参数,该方法在信号重构过程中对词典进行动态调整。为同时实现稀疏恢复与词典调整,该方法利用变分期望-最大化(EM)算法交替执行信号系数估计与词典参数优化。实验结果表明所提方法是有效的。 In the current Compressed Sensing (CS) theory, signal reconstruction depends on presetting an appropriate sparsifying dictionary. For signals characterized by parametric models, this dictionary is known to be a parameterized dictionary of a certain form, but the values of the parameters are difficult to determine. If the parameters are set to a group of uniform grid points, the mismatch between the assumed and the actual sparsifying dictionaries will cause the performance of conventional CS reconstruction methods to degrade considerably. To address this, a CS reconstruction method that utilizes dynamic dictionaries is proposed. By iteratively optimizing dictionary parameters, the method refines the dictionary dynamically during signal reconstruction. To achieve joint sparse recovery and dictionary refinement, the method alternates between steps of signal coefficients estimation and dictionary parameters optimization under the framework of the variational Expectation-Maximization (EM) algorithm. Experimental results demonstrate the effectiveness of the proposed method.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第11期2554-2560,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60972113 61101179)资助课题
关键词 压缩感知(CS) 稀疏恢复 动态词典 期望-最大化(EM) 变分贝叶斯近似 Compressed Sensing (CS) Sparse recovery Dynamic dictionaries Expectation-Maximization (EM) Variational Bayesian approximation
  • 相关文献

参考文献17

  • 1Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 2戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:216
  • 3焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 4Chi Y, Schaxf L L, Pezeshki A, et al.. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182-2195.
  • 5Moon T K. The expectation-maximization algorithm[J]. IEEE Signal Processing Magazine, 1996, 13(6): 47-60.
  • 6Smfdl V and Quinn A. The Variational Bayes Method in Signal Processing[M]. New York: Springer-Verlag, 2005.
  • 7Tzikas D G, Likas A C, and Galatsanos N P. The variational approximation for Bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131-146.
  • 8Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1: 211-244.
  • 9Austin C D, Ertin E, Ash J N, et al.. On the relation between sparse sampling and parametric estimation[C]. IEEE 13th Digital Signal Processing Workshop and Workshop on Signal Processing Education, Hiltion Marco Island Beach Resort, Florida, 2009: 387-392.
  • 10Neal R M and Hinton G E. A View of the EM Algorithm that Justifies Incremental, Sparse and other Variants[M]. Cambridge: MA, MIT Press, 1998: 355-368.

二级参考文献145

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 3Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263.
  • 4Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592.
  • 5Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 6Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 7Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20.
  • 8Candes E J,Tao T.Decoding by linear programming.IEEE Transactions on Information Theory,2005,51(3):4203-4215.
  • 9Cand,et al.Sparsity and incoherence in compressive sampiing.Inverse Problems,2007,23(3):969-985.
  • 10Candes E,Tao T.The dantzig selector:Statistical estimation when P is much larger than n.Annals of Statistics,2007,35(6):2313-2351.

共引文献486

同被引文献42

  • 1Si X S,Wang W B,Hu C H,et al.Remaining useful life estimation-a review on the statistical data driven approa-ches[J].Europen Journal of Operational Research,2011,213(1):1-14.
  • 2Zio E,Peloni G.Praticle filtering prognostic estimation of the remaining useful life of nonlinear components[J].Reliability Engineering and System Safety,2011,96(3):403-409.
  • 3Ghasemi A,Yacout S,Ouali M S.Evaluating the reliability function and the mean residual life for equipment with unobservable states[J].IEEE Transactions on Reliability,2010,59(1):45-54.
  • 4Peng Y,Dong M.A prognosis method using age-dependent hidden semi-Markov model for equipment health pre-diction[J].Mechanical Systems and Signal Processing,2011,25(1):237-252.
  • 5Wang W B,Christer A H.Towards a general condition based maintenance model for a stochastic dynamic system[J],Journal of the Operational Research Society,2000,51(2):145-155.
  • 6Wang W B.A prognosis model for wear prediction based on oil-based monitoring[J].Journal of the Operational Research Society,2006,58(7):887-893.
  • 7Wang W B,Zhang W.An asset residual life prediction model based on expert judgments[J].Europen Journal of Operational Research,2008,188(2):496-505.
  • 8Wang W B,Hussin B.Plant residual time modelling based on observed variables in oil samples[J].Journal of the Operational Research Society,2009,60(6)789-796.
  • 9Carr M,Wang W B.Modeling failure modes for residuallife prediction using stochastic filtering theory[J],IEEE Transactions on Reliability,2010,59(2):346-355.
  • 10Carr M,Wang W B.An approximate algorithm for prognostic modeling using condition monitoring information[J].Europen Journal of Operational Research,2011,211(1):90-96.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部