期刊文献+

基于量化压缩感知的IR-UWB接收信号重构研究 被引量:1

The IR-UWB Received Signal Reconstruction Based on Quantized Compressed Sensing
下载PDF
导出
摘要 压缩感知理论为IR-UWB信号的低速采样接收提供了新的思路,但现有的低速率压缩采样架构大都理想化了量化过程。该文充分考虑量化噪声的实际影响,拟设计出抗噪性强的IR-UWB接收信号重构方法。基于对压缩采样值中噪声分布特性的分析,修正了信号重构模型,并通过仿真对比了DS(Dantzig-Selector)法求解和传统重构算法求解的性能差异。在此基础上,提出了一种在DS和SP(Subspace Pursuit)算法中自适应选择的信号重构方法(联合DS-SP)。仿真结果表明,联合DS-SP以折中于DS和SP之间的复杂度在不同噪声情形下获得了最优的重构性能,且相对经典重构算法有较大的性能提升,为压缩感知框架下的IR-UWB接收机数字后端提供了一种新的信号重构策略。 Compressed Sensing (CS) theory provides a new solution for low-rate sampling design of Impulse Radio Ultra-WideBand (IR-UWB) receiver, but the quantization process is usually idealized in existent CS based sampling architectures. In this paper, the influence of quantization noise is fully considered, and an IR-UWB signal reconstruction method with high anti-noise performance is proposed. Based on the analysis of the receiver noise distribution characteristics, the signal reconstruction optimization model is revised, and then the performance of Dantzig-Selector (DS) method is compared with the traditional signal reconstruction algorithms. Further, a joint DS-SP method which can self-adaptively select the reconstruction algorithms between DS and SP (Subspace Pursuit) is proposed. Simulation results show that the joint DS-SP method which has computational complexity trade-off between DS and SP can get the best performance under different noise regions and quantization precisions What's more, joint DS-SP has large performance improvement compared to the traditional reconstruction algorithms, thus provides a new strategy of CS signal reconstruction for the design of IR-UWB receiver's digital back-end.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第11期2761-2766,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金青年基金(61001092) 广东省自然科学基金(9451805707003235)资助课题
关键词 脉冲超宽带 压缩感知 量化噪声 Dantzig-Selector(DS)算法 SUBSPACE Pursuit(SP)算法 Impulse Radio Ultra-WideBand (IR-UWB) Compressed Sensing (CS) Quantization noise Dantzig-Selector (DS) algorithm Subspace Pursuit (SP) algorithm
  • 相关文献

参考文献15

  • 1Donoho D. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Tropp J, Laska J, Duarte M, et al.. Beyond Nyquist: efficient sampling of sparse bandlimited signals[J]. IEEE Transactions on Information Theory, 2010, 56(1): 520-544.
  • 3Paredes J, Arce G R, and Wang Z, Ultra-wideband compressed sensing: channel estimation[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(3): 383-395.
  • 4Zhang P, Hu Z, Qiu R C, et al.. A compressive sensing based ultra-wideband communication systera[C]. IEEE International Conference on Communications (ICC), Dresden,2009: 1-5.
  • 5Laska J, Kirolos S, Duarte M, et al.. Theory and implementation of an analog-to-information converter using random demodulation[C]. IEEE International Symposium on Circuits and Systems (ISCAS), New Orleans, 2007:1959-1962.
  • 6Chen S, Donoho D, and Saunders M. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61.
  • 7Zhang filter Xian-yu, Liu Yu-lin, and Zhang Jian-xin. Random based ultra-wideband channel estimation[C]. International Conference on Future Computer and Communication (ICFCC), Wuhan, 2010, 2: 399-403.
  • 8Ben-Haim Z, Eldar Y C, and Elad M. Coherence-based performance guarantees for estimating a sparse vector under random noise[J]. IEEE Transactions Signal Processing, 2010, 58(10): 5030-5043.
  • 9Chatterjee S, Sundman D, and Skoglund M. Look ahead orthogonal matching pursuit[C]. IEEE International Conference Acoustics, Speech and Signal Processing (ICASSP), Prague, 2011: 4024-4027.
  • 10Needell D and Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Communications of the ACM, 2010, 53(12): 93-100.

同被引文献14

  • 1Donoho D. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Tropp J, Laska J, Duarte M, et al. Beyond Nyquist: Ef- ficient sampling of sparse bandlimited signals. IEEE Transactions on Information Theory, 2010, 56( 1 ) : 520- 544.
  • 3Zhang P, Hu Z, Qiu R C, et al. In: A compressive sens- ing based ultra-wideband communication system. In: Proceedings of the IEEE International Conference on Communications (ICE), Dresden, Germany, 2009.1-5.
  • 4Laska J, Kirolos S, Duarte M, et al. Theory and imple- mentation of an analog-to-information converter using ran- dom demodulation. In: Proceedings of the IEEE Interna- tional Symposium on Circuits and Systems (ISCAS), New Orleans, USA, 2007. 1959-1962.
  • 5Ben-Haim Z, Eldar Y C, Elad M. Coherence-based per- formance guarantees for estimating a sparse vector under random noise. IEEE Transaction Signal Processing, 2010, 58(10) : 5030-5043.
  • 6Zymnis A, Boyd S, Candes E. Compressed sensing withquantized measurements. IEEE Signal Processing Letters, 2010, 17(2): 149-152.
  • 7Max J. Quantizing for minimum distortion. IRE Transac- tions on Information Theory, 1960, IT-6:7-12.
  • 8Laska J N, Boufounos P T, Davenport M A, et al. Democ- racy in action: Quantization, saturation and compressive sensing. Applied and Computational Harmonic Analysis, 2011, 31(3) : 429-443.
  • 9Jacques L, Hammond D K, Fadili M J. Dequantizing compressed sensing: When oversampling and non-Gauss- ian constraints combine. IEEE Transactions on Informa- tion Theory, 2011, 57 (1): 559-571.
  • 10Candes E, Tao T. The dantzig selector: statistical estima- tion when p is much larger than n ( with discussion). An-nals of Statistics, 2007, 35(6):2313-2351.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部