期刊文献+

一种机动目标位置自适应估计模型

An adaptive position estimation for maneuvering target tracking
下载PDF
导出
摘要 目标运动模型是机动目标跟踪的基本要素之一。现有的机动目标运动模型有的无法自适应目标运动模式,有的模型复杂,计算量较大。根据牛顿运动定律、声纳目标加速度短时间内一般不会剧烈变化的特性和高阶马尔可夫过程,推导出了适应于加速度渐变、不变等多种机动形式的声纳机动目标位置自适应估计模型。该模型采用单一的状态变量,不存在状态耦合,因此模型简单,计算实时性强。通过对不同运动模式的目标数据进行仿真估计,证明了此估计模型的正确性和自适应性。 Maneuvering target motion model is one of the basics for maneuvering target tracking.Some of the current models are not adaptive,and some are very complicated.An adaptive position estimation model for gradual change acceleration or constant acceleration sonar targets tracking is proposed in this paper,which is based on the Newton’s Laws of Motion,the acceleration of sonar objects usually cannot be changed acutely and high order Markov process.The model has only one state variable,and so the time consumption for operation is less than that of conventional Models.With processing of various motion targets data,it is shown that the position estimation model is good and adaptive.
出处 《声学技术》 CSCD 2012年第5期459-462,共4页 Technical Acoustics
关键词 马尔可夫过程 运动模型 自适应估计 Markov process motion model adaptive estimation
  • 相关文献

参考文献17

  • 1Friedland B. Optimum steady-state position and velocity estimation using noisy sampled position data[J]. IEEE Transactions on Aero- space and Electronic Systems, 1973, 9(6): 906-911.
  • 2Hampton R L T, Cooke J R. Unsupervised tracking of maneuver- ing vehicle[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(2): 197-207.
  • 3Sniger R A. Estimating optimal tracking filter performance for manned maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, 6(4): 473-483.
  • 4Moose R L. An adaptive state estimation solution to the maneu- vering targets Problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 1975, 20(6): 359-362.
  • 5Moose R L. Modeling and estimation for tracking maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Sys- tems, 1979, 15(3), 448-456.
  • 6ZHOU Hongren, Kumar K S E A current statistical model and adaptive algorithm for estimating maneuvering targets[J]. AIAA Journal on Guidance, Control and Dynamics, 1984, 7(5):596-602. Electronics Letters, 1981, 17(16): 561-563.
  • 7Blom H A P, Bar-Shalom Y. The IMM algorithm for system with Markovian switching coefficients[J]. IEEE Transactions on Auto-matic Control, 1988, 33(8): 780-783.
  • 8Bar-Shalom Y, Chang K C, Blom H A P. Tracking a maneuvering target using input estimation versus interacting multiple model al- gorithms[J]. IEEE Transactions on Aerospace and Electronic sys- tems, 1989, 25(2): 296-300.
  • 9Kirubarajan T, Bar-Shalom Y. Kalman filter versus IMM estima- tor: when do we need the latter[J]. IEEE Transactions on Aero- space and Electronic Systems, 2003, 39(4): 1452-1457.
  • 10Punithakumar K, Kirubarajan T, Sinha A. Multiple model proba- bility hypothesis density filter for tracking maneuvering targets. Signal and Data Processing of Small Targets[J]. IEEE Transac- tions on Aerospace and Electronic Systems. 2008.4-4dl): 87-98.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部