期刊文献+

基于二进制人工蜂群算法的认知无线电决策引擎 被引量:5

Cognitive radio decision engine based on binary artificial bee colony algorithm
下载PDF
导出
摘要 为实现认知无线电系统参数的自适应调整功能,提出了一种基于二进制人工蜂群算法的认知无线电决策引擎。将认知无线电决策问题转化为多目标函数优化问题,并采用加权和方法将复杂的多目标函数优化问题归一化为简单的单目标函数优化问题。采用二进制人工蜂群算法对此优化问题进行求解,实现对无线电系统参数的优化调整。最后,通过一种多载波系统对算法性能进行仿真分析,仿真结果验证了该算法的有效性和实用性。 In order to achieve a parameters adjusting capability adaptive in cognitive radio,a cognitive decision engine based on binary artificial bee colony algorithm is proposed,in which the issue of cognitive decision engine is turned into a multiple objective functions optimization problem.These objective functions can be combined into one single objective function by using a simple weighted sum approach.Then the optimization problem is solved and the cognitive radio parameters adjusting capability is achieved by binary artificial bee colony algorithm.A multi-carrier system is provided for the performance analysis to verify the effectiveness and usefulness when applying the proposed scheme.
出处 《燕山大学学报》 CAS 2012年第5期439-444,共6页 Journal of Yanshan University
基金 国家自然科学基金资助项目(61172095) 河北省自然科学基金资助项目(F2012203138)
关键词 二进制人工蜂群算法 认知无线电 认知引擎 决策引擎 binary artificial bee colony algorithm cognitive radio cognitive engine decision engine
  • 相关文献

参考文献12

  • 1Yucek T, Arslan H. A survey of spectrum sensing algorithms forcognitive radio application [J]. IEEE Communication Surveys &Tutorials, 2009,11 (1): 116-130.
  • 2Akyildiz IF, Lee W Y, Vuran M C,et al.. Next generation dynamicspectrum access cognitive radio wireless networks: a survey [J].Computer Networks Journal, 2006,50 (13): 2127-2159.
  • 3NeelJ, Reed J, Mackenzie A. Cognitive radio network performanceanalysis [M] //Fette B. Cognitive Radio Technology. Amsterdam:Elsevier, 2006: 1-15.
  • 4Newman T R, Barker B A, Wyglimski A M, et al.. Cognitiveengine implementation for wireless multi-carriers transceivers [J].Wiley Wireless Communications and Mobile Computing, 2007,7(9): 1129-1142.
  • 5Rondeau T W, Le B, Maldonado D, et al.. Cognitive radioformulation and implementation [C] //The first International Con-ference on Cognitive Radio Oriented Wireless Networks and Com-munication, 2006: 1-10.
  • 6Hauris J F. Genetic algorithm optimization in a cognitive radio forautonomous vehicle communications [J]. IEEE International Sym-posium on Computational Intelligence in Robotics and Automa-tion, 2007,20 (23): 427-431.
  • 7赵知劲,郑仕链,尚俊娜,孔宪正.基于量子遗传算法的认知无线电决策引擎研究[J].物理学报,2007,56(11):6760-6766. 被引量:34
  • 8赵知劲,徐世宇,郑仕链,杨小牛.基于二进制粒子群算法的认知无线电决策引擎[J].物理学报,2009,58(7):5118-5125. 被引量:32
  • 9BasturkB, Karaboga D. An artificial bee colony (ABC) algorithmfor numeric fianction optimization [C] //IEEE Swarm IntelligenceSymposium, Indianapolis, 2006: 12:14.
  • 10Ishibuchi H, MurataT. A multi-objective genetic local search al-gorithm and its application to flow shop scheduling [J]. IEEE Trans-actions on Systems, Man, and Cybernetics, PartC: Applicationsand Reviews, 1998,28 (3): 392-403.

二级参考文献23

  • 1周殊,潘炜,罗斌,张伟利,丁莹.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901. 被引量:33
  • 2赵知劲,郑仕链,邢国际,尚俊娜.应用遗传算法的认知无线电自适应参数调整[J].压电与声光,2007,29(1):90-92. 被引量:2
  • 3Rondeau T W,Rieser C J,Bostian C W 2004 SDR Forum Technical Conference C-3
  • 4Rondeau T W,Le B,Maldonado D,Scaperoth D,Bostian C W 2006 The first International Conference on Cognitive Radio Oriented Wireless Networks and Communication
  • 5Hauris J F 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation 427
  • 6Newman T R,Barker B A,Wyglinski A M,Agah A,Evans J B,Minden G J 2007 Wiley Wireless Communications and Mobile Computing 7 1129
  • 7Newman T R,Rajbanshi R,Wyglinski A M,Evans J B,Minden GJ 2007 The second International Conference on Cognitive Radio Oriented Wireless Networks and Communications
  • 8Zhao Z J,Zheng S L,Xu C Y 2007 WSEAS Transactions on Communications 6 773
  • 9Shi Y,Eberhart R 1998 IEEE International Conference on Evolutionary Computation 69
  • 10Kennedy J,Eberhart R 1995 IEEE International Conference on Neural Networks 4 1942

共引文献54

同被引文献47

  • 1赵知劲,郑仕链,尚俊娜,孔宪正.基于量子遗传算法的认知无线电决策引擎研究[J].物理学报,2007,56(11):6760-6766. 被引量:34
  • 2Rondeau T W, Le B, Maldonado D, et al.Cognitive radio formulation and implementation[C]//IEEE Proceedings of Crown Com,2006: 1-10.
  • 3Rieser C J.Biologically inspired cognitive radio engine model utilizing distributed genetic algorithms for se- cure and robust wireless communications and network- ing[D].Virginia: Virginia Polytechnic Institute and State University, 2004.
  • 4Zhang X Q,Huang Y Q,Jiang H,et al.Design of cogni- tive radio node engine based on genetic algorithmiC]// IEEE Conference on Information Engineering,2009:22-25.
  • 5Karaboga D.An idea based on honeybee swarm for numeri- cal optimization, Technical Report TR06[R].[S.1.]: Com- puter Engineering Department,Engineering Faculty,Erci- yes University, 2005.
  • 6Marinakis Y, Marinaki M, Matsatsinis N.A hybrid dis- crete artificial bee colony-GRASP algorithm for cluster- ing[C]//International Conference on Computers Industrial Engineering, Troyes, France, 2009 : 548-553.
  • 7蒋科辉.Taguchi方法混合ABC算法的车辆部件优化设计fJ].计算机工程与应用,2014,50(1):246-250.
  • 8Tizhoosh H R.Opposition-based learning: a new scheme for machine intelligence[C]//Proceedings of International Conference on Computational Intelligence for Model- ing Control and Automation, 2005 : 695-701.
  • 9Zhu G P, Kwong S.Gbest-guided artificial bee colony algorithm for numerical function optimization[J].Applied Mathematics and Computation, 2010,217 ( 7 ) : 3166-3173.
  • 10Proakis J G.Digital communications[M].4th ed.New York: McGraw Hill,2000.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部