期刊文献+

新型光学低相干反射仪Lenstar与IOLMaster测量人工晶状体度数的比较研究 被引量:10

Comparison of Lenstar and IOLMaster for intraocular lens power calculation
原文传递
导出
摘要 【摘要】目的比较新型光学低相干反射仪Lenstar与IOLMaster测量厶工晶状体(IOL)度数的一致性和准确性。方法前瞻性对照研究。同一观测者分别应用光学低相干反射仪Lenstar和IOLMasterV5.4测量98例白内障患者157只眼的眼轴长度(AL),角膜曲率值(Km)和前房深度(ACD),比较两种仪器测量眼前节参数的相关性和差异性,并且比较分别使用4种IOL公式(SRK/T、HolidayI、HofferQ和Haigis)计算的IOL度数,目标屈光度设定为正视眼。两组数据间比较采用t检验或Wilcoxon检验,两种仪器测量数据进行IOL度数计算的一致性研究采用Bland.Ahman法。结果Lenstar和IOLMaster测量AL的平均值分别为(23.65±1.17)mm和(23.65±1.16)mm,Km值分别为(44.15±1.58)D和(44.17±1.58)D,差异均无统计学意义(P〉0.05),ACD分别为(3.09±0.41)mm和(3.05±0.41)mm,差异有统计学意义(P=0.001)。两仪器测量同一参数结果均具有高度相关性(所有r〉0.9,P〈0.001)。两种仪器应用4种IOL公式计算结果一致性较好,其中应用SRK/T公式计算差异最小,1-Iaigis公式差异相对较大。结论应用Lenstar测量眼球生物参数具有准确性、非接触性、操作简便、安全而且患者易于接受的优点,为我们提供了白内障术前准确可靠的数据,在白内障人群中与IOLMaster比较具有较好的一致性。 Objective To evaluate the precision of Intraocular Lens (IOL) power calculation using a new optical low-coherence reflectometry biometer (Lenstar) and compare the results with those obtained with IOLMaster. Methods It was a prospective controlled study. Biometry measurements in 157 eyes of 98 cataract patients were performed by the same examiner with Lenstar and IOLMaster. Axial length (AL) , corneal keratometry readings (Kin) , and anterior chamber depth ( ACD ) were obtained. Correlation and differences of biometry measurements obtained with two biometers were made. Intraocular Lens power were calculated using 4 formulas and the corresponding IOL constants, the target was emmetropia. Then statistical analysis was proceeded. Results Axial length were ( 23.65 ± 1.17 ) mm and ( 23.65±1.16 ) mm respectively , Kin(44. 15 ±1.58)D and (44. 17 ±1.58)D respectively by Lenstar and IOLMaster and no statistical differences were found ( P 〉 0. 05 ) . ACD were ( 3.09 ± 0. 41 ) mm and ( 3.05± 0.41 ) mm respectively by Lenstar and IOLMaster and there was statistical difference between them( P = 0. 001 ). All biometry measurements showed good linear correlation( r 〉 0. 9,P 〈 0. 001 ). IOL power calculations with biometry values between Lenstar and IOLMaster using the 4 formulas showed good agreement. The least difference was obtained with formula SRK/T and the most with formula Haigis. Conclusions Lenstar can provide precise and noncontact biometry measurements easily and safely, which are welcome by patients. Providing precise and reliable biometry measurements of cataract patients for Intraocular Lens power calculation, it shows good agreement with IOLMaster and the two biometers can be interchanged.
出处 《中华眼科杂志》 CAS CSCD 北大核心 2012年第11期1005-1010,共6页 Chinese Journal of Ophthalmology
基金 浙江省医药卫生科技计划项目(2012KYB135) 温州市科技局资助项目(Y20110045)
关键词 白内障 轴长度 前房 晶体 人工 光学和光子学 诊断技术 眼科 Cataract Axial length,eye Anterior chamber Lenses,intraocular Optics and photonics Diagnostic techniques,ophthalmological
  • 相关文献

参考文献20

  • 1Olsen T. Sources of error in intraocular lens power calculation. 1 Cataract Refract Surg, 1992 , 18: 125 -129.
  • 2Findl 0, Drexler W, Menapace R, et al. Improved prediction of intraocular lens power using partial coherence interferometry. 1 Cataract Refract Surg ,2001,27: 861-867.
  • 3Lee AC, Qazi MA,Pepose IS. Biometry and intraocular lens power calculation. Curr Opin Ophthalmol,2008,19:13-17.
  • 4Buckhurst PI, Wolffsohn IS, Shah S, et al. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br 1 Ophthalmol ,2009,93: 949-953.
  • 5Thomas 0, Martin T. Calibration of axial length measurements with the Zeiss IOLMaster. 1 Cataract Refract Surg, 2005,31: 1345- 1350.
  • 6Bland 1M, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1986, 1 : 307-310.
  • 7Raj PS, Ilango B, Watson A. Measurement of axial length in the calculation of intraocular lens power. Eye (Lond) ,1998,12 ( Pt 2) : 227 -229.
  • 8Butcher 1M, 0' Brien C. The reproducibility of biometry and keratometry measurements. Eye (Lond), 1991,5 ( Pt 6): 708- 711.
  • 9Vogel A, Dick HB, Krummenauer F. Reproducibility of optical biometry using partial coherence interferometry: intraobserver and interobserver reliability. 1 Cataract Refract Surg, 200 1 ,27: 1961- 1968.
  • 10Nemeth 1, Fekete 0, Pesztenlehrer N. Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation. J Cataract Refract Surg, 2003 , 29: 85-88.

二级参考文献11

  • 1苏安庭,葛正光,郁晓娥.Oculus眼前段分析仪与超声测量角膜厚度的比较[J].临床眼科杂志,2005,13(6):509-510. 被引量:1
  • 2周佳奇,褚仁远,周行涛.非接触法测量角膜厚度的临床分析[J].中华眼科杂志,2006,42(8):714-716. 被引量:14
  • 3陈卉.Bland-Altman分析在临床测量方法一致性评价中的应用[J].中国卫生统计,2007,24(3):308-309. 被引量:217
  • 4Marsich MW, Bullimore M. The repeatability of corneal thickness measures. Cornea ,2000,19:792-795.
  • 5Giasson C, Forthomme D. Comparison of central corneal thickness measurements between optical and ultrasound pachometers. Optom Vis Sci, 1992,69:236-241.
  • 6Bland JM, Ahman DG. Measuring agreement in method comparison studies. Stat Methods Med Res, 1999,8:135-160.
  • 7O'Donnell C, Maldonado-Codina C. Agreement and repeatability of central thickness measurement in normal corneas using ultrasound pachymetry and the OCULUS Pentacam. Cornea, 2005, 24:920-924.
  • 8Al-Mezaine HS, Al-Amro SA, Kangave D, et al. Comparison between central corneal thickness measurements by oculus pentacam and ultrasonic pachymetry. Int Ophthalmol, 2008, 28 : 333-338.
  • 9Buehl W, Stojanac D, Sacu S, et al. Comparison of three methods of measuring corneal thickness and anterior chamber depth. Am J Ophthalmol, 2006, 141:7-12.
  • 10Linnet K. Necessary sample size for method comparison studies based on regression analysis. Clin Chem, 1999, 45:882-894.

共引文献15

同被引文献117

  • 1李岩,齐朋承,刘佳.中老年糖尿病眼底病变患者白内障术后的黄斑水肿和视力[J].中国老年学杂志,2014,34(1):1-3. 被引量:26
  • 2Olsen T. The accuracy of ultrasonic determination of axial length in pseudophakic eyes [J]. Acta Ophthalmol(Copenh) , 1989,67(2) : 141-144.
  • 3Nemeth J, Fekete O, Pesztenlehrer N. Optical and ultrasound measurement of axial length and anterior chamber depth for in- traocular lens power calculation [J]. J Cataract Refract Surg, 2003,29( 1 ) : 85-88.
  • 4Sheng H,Bottjer C A,Bulhmore M A. Ocular component mea- surement using the Zeiss IOLMaster[J]. Optom Vis Sci,2004, 81(1):27-34.
  • 5Holladay J T, Prager T C, Chandler T Y, et al. A three-part system for refining intraocular lens power calculations [J]. J Cataract Refract Surg, 1988,14(1) : 17-24.
  • 6Chen Y A, Hirnschall N, Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold stan- dard biometer [J]. J Cataract Refract Surg, 2011, 37 (3) : 513-517.
  • 7Drexler W,Find] O,Menapaee R,et al. Partial coherence inter- ferometry: a novel approach to biometry in cataract surgery[J]. Am J Ophthalmol, 1998,126(4) :524-534.
  • 8Buckhurst P J, Wolffsohn J S, Shah S, et al. A new optical low coherence refleetometry device for ocular biometry in cataract patients[Jl. Br J Ophthalmol,2009,93(7):949-953.
  • 9Rohrer K, Frueh B E,Wahi R, et al. Comparison and evalua- tion of ocular biometry using a new noncontact optical low-co- herence reflectometer [J]. Ophthalmology, 2009, 116 (11) : 2087-2092.
  • 10Gursoy H, Sahin A, Basmak H, et al. Lenstar versus ultrasoun0 for ocular biometry in a pediatric population]. Optom Vis Sci,2011,88(8) :912-919.

引证文献10

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部