期刊文献+

冷却条件对超声振动法制备AZ91半固态浆料组织的影响(英文) 被引量:10

Effect of cooling condition on microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process
下载PDF
导出
摘要 利用超声振动法制备AZ91合金半固态浆料,在不同温度区间和冷却速率下对熔体进行超声处理,研究冷却条件对AZ91半固态浆料微观组织的影响。结果表明:在形核阶段,熔体在超声振动引发的空化和声流效应作用下,能够获得细小、近球状的初生α-Mg固相颗粒;在固液相线温度区间内,随着超声温度下限的降低,半固态浆料的固相率和固相颗粒的平均尺寸增加;在超声振动过程中,随着冷却速率的提高,半固态浆料的固相率增大,固相颗粒的平均形状因子降低。在本实验条件下,适宜的超声振动温度区间为605°C到595°C或590°C,合适的冷却速率为2-3°C/min。 The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature ranges under different cooling rates. The results show that fine and spherical α-Mg particles are obtained under ultrasonic vibration at the nucleation stage, which is mainly attributed to the cavitation and acoustic streaming induced by the ultrasonic vibration. The reduction of lower limit of ultrasonic vibration temperature between the liquidus and solidus increases the solid volume fraction and average particle size. Increasing cooling rate increases the solid volume fraction and reduces the average shape factor of particles. The appropriate temperature range for ultrasonic vibration is from 605 °C to 595 °C or 590 °C, and the suitable cooling rate is 2-3 °C/min.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2357-2363,共7页 中国有色金属学报(英文版)
基金 Project(2011M500772)supported by China Postdoctoral Science Foundation of China Project(2007CB613701)supported by the National Basic Research Program of China Project(2009AA033501)supported by the National High-tech R&D Program of China
关键词 AZ91合金 半固态 超声振动 微观组织 冷却条件 AZ91 alloy semi-solid ultrasonic vibration microstructure cooling condition
  • 相关文献

参考文献1

二级参考文献10

  • 1Lu Y.Z., Wang Q.D., Ding W.J., Zeng X.Q., and Zhu Y.P., Fracture behavior of AZ91 magnesium alloy, Mater. Lett., 2000, 44 (5): 265.
  • 2Srivatsan T.S., Wei L., and Chang C.F., The tensile behavior of rapidly solidified magnesium alloys, J. Mater. Sci., 1995, 30 (7): 1832.
  • 3Sakkinen D.J., Physical Metallurgy of Magnesium Die Castings, SAE Technical Publication, Warrendale, 1994: 71.
  • 4Jenkinson D.C. and Hogan L.M., The modification of aluminum-silicon alloys with strontium, J. Cryst. Growth, 1975, 28: 171.
  • 5Nogita K. and Dahle A.K., Effects of boron on eutectic modification of hypoeutectic Al-Si alloys, Seripta Mater., 2003, 48: 307.
  • 6Heiberg G., Nogita K., Dahle A. K., and Arnberg L., Columnar to equiaxed transition of eutectic in hypoeutectic aluminium-silicon alloys, Acta Mater., 2002, 50 (10): 2537.
  • 7Haque M.M. and Ahmad F.I., Effect of superheating temperatures on microstructure and properties of strontium modified aluminium-silicon eutectic alloy, J. Mater. Process. Technol., 2005, 16: 2312.
  • 8Abramov O.V., Non-linear effects of acoustic generation in solids, Ultrason., 1987, 25: 73.
  • 9Eskin G.I., Pimenov Y.P., and Makarov G.S., Effect of cavitation melt treatment on the structure refinement and property improvement in cast and deformed hypereutectic Al-Si alloys, Mater. Sci. Forum, 1997, 242: 65.
  • 10E skin G.I., Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys, Ultrason. Sonnochem., 2001, 8 (3): 319.

共引文献3

同被引文献91

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部