期刊文献+

微波水热法合成花状纳米ZnO及其光催化活性(英文) 被引量:1

Microwave-hydrothermal preparation of flower-like ZnO microstructure and its photocatalytic activity
下载PDF
导出
摘要 使用氯化锌和精氨酸作为反应物,通过简单的微波水热技术制备花状纳米氧化锌。利用X射线衍射(XRD)和扫描电镜(SEM)对所合成的纳米氧化锌进行晶体结构和形貌的表征。通过拉曼光谱和光致发光(PL)光谱对纳米氧化锌的光学性能进行研究,证实了合成物为高结晶度的纳米氧化锌。在紫外光辐射下,合成的ZnO光催化降解亚甲基蓝(MB)有较好的效果,紫外光催化2h后亚甲基蓝的降解率达到95.60%。ZnO光催化降解亚甲基蓝可以描叙为一级动力学反应,降解速率常数在1.0675~1.6275h-1的范围中,这与所合成的ZnO形貌有关。 The flower-like ZnO microstructure was prepared by a straightforward microwave-hydrothermal technique using zinc chloride and arginine solution as reactants. The as-synthesized crystal structure and morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and the optical properties of the ZnO nanostructure were studied by Raman and photoluminescence (PL) spectra, which confirms the high crystal quality of ZnO microstructure. The as-synthesized ZnO flowers exhibit a significant enhancement of photocatalytic capability toward degrading methyl blue (MB) under UV light, the photodegradation of MB reaches 95.60%, only within 2 h of adding the as-synthesized ZnO in the MB solution under UV irradiation. Furthermore, the photodegradation could be described as the pseudo-first-order kinetics with degradation rate constant of 1.0675-1.6275 h-1, which is relative to the morphology of the structures.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2465-2470,共6页 中国有色金属学报(英文版)
基金 Project (KKSY201205025) supported by Kunming University of Science and Technology Doctoral Scientific Research Fund, China Project (2011408) supported by Testing and Analyzing Foundation of Kunming University of Science and Technology
关键词 纳米ZNO 微波水热法 光致发光 光降解 ZnO microstructure microwave-hydrothermal method photoluminescence photodegradation
  • 相关文献

参考文献29

  • 1RAO B B. Zinc oxide ceramic semi-conduetur gas sensor for ethanol vapour [J]. Materials Chemistry and Physics, 2000, 64(1): 62-65.
  • 2HORSTHUIS W H G. ZnO processing for integrated optic sensors [J]. Thin Solid Films, 1986, 137(2): 185-192.
  • 3ASIF M H, NUR O, WILLANDER M, DANIELSSON B. Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET [J]. Biosensors and Bioelectronics, 2009, 24(11): 3379-3382.
  • 4CAO X, NING W, LI L D, GUO L. Synthesis and characterization of waxberry-like microstructures ZnO for biosensors [J]. Sensors and Actuators B: Chemical, 2008, 129(1): 268-273.
  • 5KRISHNAMOORTHY S, ILIADIS A A. Development of high frequency ZnO/SiO2/Si Devices mode surface acoustic wave devices [J]. Solid-State Electronics, 2006, 50(6): 1113-1118.
  • 6LUO L, ZHANG Y F, MAO S S, LIN L W. Fabrication and characterization of ZnO film based UV photodetector [J]. Journal of Materials Science: Materials in Electronics, 2009, 20(3): 197-201.
  • 7贾志刚,彭宽宽,李艳华,诸荣孙.载银氧化锌多孔微棒的合成与光催化性能(英文)[J].Transactions of Nonferrous Metals Society of China,2012,22(4):873-878. 被引量:4
  • 8ZHANG Bai-yu, HUANG Guo-he, LIU Miao, DONG De-ming, CHEN Bing, CHRISTINE W C. ZnO-based solar photocatalysis for treatment of Cr(VI) contamination [J]. Transactions of Nonferrous Metals Society of China, 2004, 14(1): 49-53.
  • 9LV Y Z, LI C P, GUO L, WANG Q X, WANG R M, XU H B, YANG S H, AI X C, ZHANG J P. Nanostructured stars of ZnO microcrystals with intense stimulated emission [J]. Applied Physics Letters, 2005, 87: 163103.
  • 10CAO W T, DU W M, SU F H, LU G H. Anti-Stokes photoluminescence in ZnO microerystal [J]. Applied Physics Letters, 2006, 89:031902.

二级参考文献55

  • 1RAO B B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour [J]. Materials Chemistry and Physics, 2000, 64(1): 62-65.
  • 2HORSTHUIS W H G. ZnO processing for integrated optic sensors [J]. Thin Solid Films, 1986, 137(2): 185-192.
  • 3ASIF M H, NUR O, WILLANDER M, DANIELSSON B. Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET [J]. Biosensors and Bioelectronics, 2009, 24(11): 3379-3382.
  • 4CAO X, NING W, LI L D, GUO L. Synthesis and characterization of waxberry-like microstructures ZnO for biosensors [J]. Sensors and Actuators B: Chemical, 2008, 129(1): 268- 273.
  • 5KRISHNAMOORTHY S, ILIADIS A A. Development of high frequency ZnO/SiO2/Si Love mode surface acoustic wave devices [J]. Solid-State Electronics, 2006, 50(6): 1113-1118.
  • 6LUO L, ZHANG Y F, MAO S S, LIN L W. Fabrication and characterization of ZnO film based UV photodetector [J]. Journal of Materials Science--Materials in Electronics, 2009, 20(3): 197-201.
  • 7HUANG M H, WU Y Y, FEICK H, TRAN N, WEBER E, YANG P D. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Advanced Materials, 2001, 13 (2): 113-116.
  • 8SUN X C, ZHANG H Z, XU J, ZHAO Q, WANG R M, YU D P. Shape controllable synthesis of ZnO nanorod arrays via vapor phase growth [J]. Solid State Communications, 2004, 129(12): 803-807.
  • 9GENG B Y, LIU X W, WEI X W, WANG S W. Large-scale synthesis of single-crystalline ZnO nanotubes based on polymer-inducement [J]. Materials Research Bulletin, 2006, 41(10): 1979-1983.
  • 10ZHANG X H, XIE S Y, JIANG Z Y, ZHANG X, TIAN Z Q, XIE Z X, HUANG R B, ZHENG L S. Rational design and fabrication of ZnO nanotubes from nanowire templates in a microwave plasma system [J]. Journal of Physical Chemistry B, 2003, 107(37): 10114-10118.

共引文献5

同被引文献27

  • 1SEFTEL E M, MERTENS M, COOL P. The influence of the Ti^4+ location on the formation of self-assembled nanocomposite systems based on TiO2 and Mg/A1-LDHs with photocatalytic properties[J]. Applied Catalysis B: Environmental, 2013, 134: 274-285.
  • 2MOHAPATRA L, PARIDA K M. Zn-Cr layered double hydroxide: Visible light responsive photocatalyst for photocatalytic degradation of organic pollutants[J]. Separation and Purification Technology, 2012, 91: 73-80.
  • 3SAHU R K, MOHANTA B S, DAS N N. Synthesis, characterization and photocatalytic activity of mixed oxides derived from ZnA1Ti ternary layered double hydroxides[J]. Journal of Physics and Chemistry of Solids, 2013, 74(9): 1263-1270.
  • 4SEFTEL E M, PUSCASU M C, MERTENS M, COOL P, CARJA G. Assemblies of nanoparticles of CeO2-Zn-Ti-LDHs and their derived mixed oxides as novel photocatalytic systems for phenol degradation[J]. Applied Catalysis B: Environmental,2014, 150: 157-166.
  • 5SEFTEL E M, POPOVICI E, MERTENS M, WITTE K D, TENDELOO G V, COOL P, VANSANT E F. Zn-A1 layered double hydroxides: Synthesis, characterization and photocatalytic application[J]. Microporous and Mesoporous Materials, 2008, 113(1): 296-304.
  • 6MORA M, LOPES M I, SANCHIDRIAN C J, RUIZ J R. Ca/A1 mixed oxides as catalysts for the meerwein-ponndorf-verley reaction[J]. Catalysis Letters, 2010, 136(3/4): 192-198.
  • 7AHMED A A A, TALIB Z A, HUSSEIN M Z, ZAKARIA A. Improvement of the crystallinity and photocatalytic property of zinc oxide as calcination product of Zn-A1 layered double hydroxide[J]. Journal of Alloys and Compounds, 2012, 539: 154-160.
  • 8DUTTA K, DAS S, PRAMANIK A. Concomitant synthesis of highly crystalline Zn-A1 layered double hydroxide and ZnO: Phase interconversion and enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science, 2012, 366(1): 28-36.
  • 9VALENTE J S, TZOMPANTZI F, PRINCE J. Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO2/MgAI layered double hydroxides[J]. Applied Catalysis B: Environmental, 2011,102(1): 276-285.
  • 10SUN Jian-chao, ZHANG Yan-bing, CHENG Juan, FAN Hai, ZHU Jian-ying, WANG Xin, AI Shi-yun. Synthesis of Ag/AgC1/Zn-Cr LDHs composite with enhanced visible-light photocatalytic performance[J]. Journal of Molecular Catalysis A: Chemical, 2014, 382: 146-153.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部