期刊文献+

(G′/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics 被引量:16

(G′/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics
原文传递
导出
摘要 In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.
作者 郑滨
机构地区 School of Science
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第11期623-630,共8页 理论物理通讯(英文版)
关键词 (G'/G)-expansion method fractional partial differential equations exact solutions fractionalcomplex transformation 偏微分方程理论 分数阶 展开法 数学物理 耦合KdV方程 求解 常微分方程 非线性
  • 相关文献

参考文献1

二级参考文献29

  • 1R.H. Byrd, R.B. Schnabel and G.A. Shultz, A trust region algorithm for nonlinearly constrained optimization, SIAM J. Numer. Anal., 24 (1987), 1152-1170.
  • 2M.R. Celis, J.E. Dennis and R.A. Tapia, A trust region algorithm for nonlinear equality constrained optimization, in: P.T. Boggs, R.H. Byrd and R.B. Schnabel, eds., Numerical Optimization, SIAM, Philadelphia, USA, 1985.
  • 3L. Chen and D. Goldfarb, Interior point l2-penalty methods for nonlinear programming with strong global convergence properties, Math. Program., 108 (2006), 1-36.
  • 4T.F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM J. Optimiz., 6 (1996), 418-445.
  • 5A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint, A primal-dual trust region algorithm for non-convex nonlinear programming, Math. Program., 87 (2000), 215-249.
  • 6A.R. Conn, N.I.M. Gould and Ph.L. Toint, LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A), Springer, Heidelberg, New York. USA, 1992.
  • 7A.R. Conn, N.I.M. Gould and Ph.L. Toint, Trust-Region Methods, SIAM, Philadelphia, USA, 2000.
  • 8J.E. Dennis and H.H.W. Mei, Two new unconstrained optimizaiton algorithms which use function and gradient values, J. Optimiz. Theory App., 28 (1979), 453-482.
  • 9E.D. Dolan and J.J. More, Benchmarking optimization software with performance profiles. Math. Program., Serial A., 91 (2002), 201-213.
  • 10R. Fletcher, A model algorithm for composite NDO problem, Math. Program. Study, 17 (1982), 67-76.

共引文献2

同被引文献46

  • 1Qinghua Ma (Faculty of Information Science and Technology,Guangdong University of Foreign Studies,Guangzhou 510420) Enhao Yang(Dept. of Math.,Jinan University,Guangzhou 510632).BOUNDS ON SOLUTIONS TO SOME NONLINEAR VOLTERRA INTEGRAL INEQUALITIES WITH WEAKLY SINGULAR KERNELS[J].Annals of Differential Equations,2011,27(3):352-360. 被引量:4
  • 2Bin Lu.The first integral method for some time fractional differential equations[J].Journal of Mathematical Analysis and Applications.2012(2)
  • 3Sheng Zhang,Hong-Qing Zhang.Fractional sub-equation method and its applications to nonlinear fractional PDEs[J].Physics Letters A.2011(7)
  • 4Guo-cheng Wu,E.W.M. Lee.Fractional variational iteration method and its application[J].Physics Letters A.2010(25)
  • 5Mingrong Cui.Compact finite difference method for the fractional diffusion equation[J].Journal of Computational Physics.2009(20)
  • 6A.M.A. El-Sayed,S.H. Behiry,W.E. Raslan.Adomian’s decomposition method for solving an intermediate fractional advection–dispersion equation[J].Computers and Mathematics with Applications.2009(5)
  • 7Quanzhong Huang,Guanhua Huang,Hongbin Zhan.A finite element solution for the fractional advection–dispersion equation[J].Advances in Water Resources.2008(12)
  • 8G. Jumarie.Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results[J].Computers and Mathematics with Applications.2006(9)
  • 9A.M.A. El-Sayed,M. Gaber.The Adomian decomposition method for solving partial differential equations of fractal order in finite domains[J].Physics Letters A.2006(3)
  • 10Ding-Jiang Huang,Hong-Qing Zhang.Exact travelling wave solutions for the Boiti–Leon–Pempinelli equation[J].Chaos Solitons and Fractals.2004(1)

引证文献16

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部