期刊文献+

Comparison of Synchronization Ability of Four Types of Regular Coupled Networks

Comparison of Synchronization Ability of Four Types of Regular Coupled Networks
原文传递
导出
摘要 We investigate the synchronization ability of four types of regular coupled networks. By introducing the proper error variables and Lyapunov functions, we turn the stability of synchronization manifold into that of null solution of error equations, further, into the negative definiteness of some symmetric matrices, thus we get the sufficient synchronization stability conditions. To test the valid of the results, we take the Chua's circuit as an example. Although the theoretical synchronization thresholds appear to be very conservative, they provide new insights about the influence of topology and scale of networks on synchronization, and that the theoretical results and our numerical simulations are consistent.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第11期681-685,共5页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation under Grant No.11002073 the Fundamental Research Funds for the Central Universities under Grant No.2011RC0702
关键词 SYNCHRONIZATION regular coupled networks Lipschitz condition Lyapunov function 同步网络 耦合网络 能力 类型 Lyapunov函数 稳定性条件 误差方程 对称矩阵
  • 相关文献

参考文献25

  • 1A. Pikovsky, M. Rosenblum, and J. Kurths, Synchroniza- tion: A Universal Concept in Nonlinear Sciences, Cam- bridge University Press, Cambridge (2001).
  • 2T. Pereira, M.S. Baptista, and J. Kurths, Eur. Phys. J. Special Topics 146 (2007) 155.
  • 3T. Nowotny, R. Huerta, and M.I. Rabinovich, Chaos 18 (2008) 037119.
  • 4W. Schultz, J. Neurophysiol 80 (1998) 1.
  • 5E. Rodriguez, N. George, J.P. Lachaux, et al., Nature (London) 397 (1999) 430.
  • 6F. Mormann, T. Kreuz, R.G. Andrzejak, et al., Epilepsy. Res. 53 (2003) 173.
  • 7P. Tass, M.G. Rosenblum, J. Weule, et al., Phys. Rev. Lett. 81 (1998) 3291.
  • 8M. Dhamala, V.K. Jirsa, and M.Z. Ding, Phys. Rev. Lett. 92 (2004) 028101.
  • 9N. Buric, K. Todorovic, and N. Vasovic, Phys. Rev. E 78 (2008) 036211.
  • 10H.X. Wang, Q.S. Lu, and Q.Y. Wang, Chin. Phys. Lett. 22 (2005) 2173.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部