期刊文献+

WC-Co硬质合金疲劳断裂机制研究 被引量:20

On the fatigue and fracture features of WC-Co cemented carbides
下载PDF
导出
摘要 疲劳和断裂是硬质合金失效的主要原因之一。主要对WC-Co硬质合金的高周疲劳性能和裂纹扩展行为进行了较为系统的研究。结果表明,WC-Co硬质合金材料表现出明显的疲劳效应,即应力水平的降低伴随着疲劳寿命的上升。在高应力区域,合金的疲劳寿命与强度有关;合金的强度越高,其疲劳寿命越长。随着应力幅值的降低,这种强度与疲劳寿命的联系越来越不明显,特别是进入高周疲劳区域后,高粘结剂含量的合金反而表现出更高的疲劳抗性。疲劳裂纹主要沿晶界和在粘结相中扩展;材料在承受疲劳载荷后,粘结相与WC硬质颗粒之间发生了剥离,这种脱粘造成WC颗粒之间相互错动形成孔隙和微裂纹,这些孔隙和微裂纹相互连接加速了裂纹的扩展并最终导致材料的断裂。粘结相在疲劳过程中产生了大量堆垛层错并发生相变,同时有析出物产生。 Fatigue and fracture are the major failure mechanisms for cemented carbides. The aim of the present work is to investigate the fatigue life and the microstructure properties of WC-Co hard metals under fatigue conditions. The result shows that the fatigue effect is strongly dependent on the stress amplitude. At high stress level, material' s fatigue life is more corresponding to its hardness, however, at low stress level, the fatigue life increases with increasing binder content. Fatigue cracks grow along grain boundaries and in binding phases. After cyclic loading, WC particles and binders separate, which causes pore and micro cracks forming. The pore and crackle connect to accelerate the crack growth and eventually lead to material fracture. In Co binders, stacking fault and phase transformation occur during fatigue process, precipitated phases are also found.
出处 《粉末冶金技术》 CAS CSCD 北大核心 2012年第5期341-347,共7页 Powder Metallurgy Technology
关键词 硬质合金 疲劳 裂纹扩展 断裂 cemented carbides fatigue crack propagation fracture
  • 相关文献

参考文献16

  • 1Prakash L J. Application of fine grained tungsten carbide basedcemented carbides. International Journal of Refractory Metals & Hard Materials, 1995, 13:257-264.
  • 2Mingard K P, Roebuck B, Marshall J, et al. Some aspects of the structure of cobalt and nickel binder phases in hardmetals. Acta Materialia, 2011, 59 : 2277 - 2290.
  • 3陈振华,姜勇,陈鼎,张忠健,徐涛,彭文.硬质合金的疲劳与断裂[J].中国有色金属学报,2011,21(10):2394-2401. 被引量:28
  • 4陈振华,史媛媛,姜勇.冷却介质对YG8硬质合金热疲劳性能的影响[J].湖南大学学报(自然科学版),2011,38(3):60-64. 被引量:2
  • 5Jiang Yong, Chen Ding. Effect of cryogenic treatment on WC-Co cemented carbides. Materials Science and Engineering A, 2011, 528 : 1735 - 1739.
  • 6Roebuck B, Almond E A. Deformation and fracture processes and the physical metallurgy of WC-Co hardmetals. International Materialia Review, 1988, 33 : 90 - 110.
  • 7Liu B, Zhang Y, Quyang S. Study on the relation between structure and fracture strength of WC-Co cemented carbides. Materialia Chemistry and Physics, 2000, 62:35 -43.
  • 8Sigl L S, Fischmeister H F. On the fracture toughness of cemented carbides. Acta Materialia, 1988, 36(4) : 887 - 897.
  • 9Cha S 1, Hong S H, Ha G H, et al. Microstructure and mechanical properties of nanocrystalline WC - 10Co cemented carbides. ScriptaMaterialia, 2001, 44 : 1535 - 1539.
  • 10Jia K, Fischer T E, Gallois B. Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites. Nanostruct Materialia, 1998, 10 (5) : 875 - 891.

二级参考文献103

共引文献42

同被引文献219

引证文献20

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部