期刊文献+

综合模式分量能量及时频域特征的柴油机故障诊断 被引量:3

Fault diagnosis of diesel engine based on energy and time frequency domain characteristics of vibration signals IMF
下载PDF
导出
摘要 柴油机缸盖振动信号中包含着丰富的柴油机工作状态信息,利用缸盖振动信号诊断柴油机工作状态是一种有效方法。鉴于缸盖振动信号非平稳性的特点,该文提出用经验模式分解方法对获取的信号进行分解,选取前三阶的模式分量近似代替原信号,用模式分量的能量百分比、重心频率和重心幅值、偏度、峭度、方差等构成柴油机工作状态特征向量,基于支持向量机对实测的柴油机故障进行诊断分类,诊断的正确率达到92%以上,验证了方法的可行性。该研究也可为其他机械设备的故障诊断提供参考。 It is a more convenient way to use vibration signals for the fault diagnosis of diesel engine since such signals contain a lot of useful information which can reflect the status of the diesel engine. In view of the non-stationary characteristics of the vibration signals, the empirical mode decomposition was used to decompose the signals obtained, the three main IMFs of signals were selected approximately to replace the original signals, and their energy percentage, gravity frequency, center of gravity amplitude, skewness and kurtosis were used as the feature vector of the status of the diesel engine. Based on support vector machines, the diesel engine fault diagnosis was conducted applying vectors obtained in the method presented in this paper. Diagnostic accuracy rate reached above 92%, which verified the feasibility of the method. The research can provide a reference for other mechanical equipment fault diagnosis.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2012年第21期37-43,共7页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家"十二五"科技支撑计划项目(2011BAD20B10-3)
关键词 柴油机 故障诊断 特征提取 支持向量机 EMD diesel engine failure analysis feature extraction support vector machine empirical mod decomposition
  • 相关文献

参考文献20

二级参考文献175

共引文献576

同被引文献46

  • 1潘阳,陈安华,何宽芳,李学军,曾波.基于PF能量特征和优化神经网络的轴承诊断[J].振动.测试与诊断,2013,33(S1):120-124. 被引量:5
  • 2李增芳,何勇,宋海燕.基于主成分分析和集成神经网络的发动机故障诊断模型研究[J].农业工程学报,2006,22(4):131-134. 被引量:24
  • 3王太勇,何慧龙,王国锋,冷永刚,胥永刚,李强.基于经验模式分解和最小二乘支持矢量机的滚动轴承故障诊断[J].机械工程学报,2007,43(4):88-92. 被引量:33
  • 4杜巧连,张克华.基于自身振动信号的液压泵状态监测及故障诊断[J].农业工程学报,2007,23(4):120-123. 被引量:33
  • 5Qiu H, Jay L, Lin J, et al. Wavelet filter-based weak signature detection method and its application on rolling bearing element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(4): 1066-1090.
  • 6Bin G F, Gao J J, Li X J. Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network[J]. Mechanical System and Signal Processing, 2012, 27(2): 696-711.
  • 7Wu Z, Huang N E, Ensemble empirical mode decomposition: A noise assisted data analysis method[J]. Adv. Adapt. DataAnal, 2009, 1(1): 1-41.
  • 8Cheng Jusheng, Yu Dejie, Yang Yu. A fault diagnosis approach for roller bearings based on EMD method and AR model[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 350-362.
  • 9Li H, Yang L, Huang D. The study of the intermittency test filtering character of Hilbert-Huang transform[J].Math. Comput. Simul, 2005,70(1): 22-32.
  • 10Jiang Hongkai, Li Chengliang, Li Huaxing. An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis[J]. Mechanical Systems and Signal Processing, 2013,36(2): 225-239.

引证文献3

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部