期刊文献+

变速箱齿轮磨损故障的极坐标角-频表示与诊断 被引量:7

Polar diagram angle-frequency representation and diagnosis for gear wear fault of gearbox
下载PDF
导出
摘要 变速箱齿轮磨损将导致振动信号中出现冲击响应成分,通过对每转内冲击响应成分的监测,可实现变速箱齿轮磨损故障诊断。为了提高变速箱齿轮磨损故障可视化监测与诊断效果,该文提出了一种极坐标角频分布方法。将采集的变速箱振动信号通过连续小波变换进行消噪处理并转变为极坐标角频分布,充分表现变速箱齿轮不同磨损工况时冲击成分的变化。以每种磨损工况时6转内的能量作为齿轮磨损特征向量,并将特征向量输入给BP神经网络进行分类训练和模式识别,有效地识别了变速箱的4种磨损状态。该研究结果为极坐标角频分布方法在变速箱状态监测与故障诊断的工程应用提供了参考。 The gearbox gear wear tend to result in impulse response in vibration signals, and monitoring impulse response in the rotation cycle, which can achieve fault diagnosis. In order to improve monitoring and diagnosis effects by the visualization, distribution method of the polar digram angle frequency(DPDAF) was introduced in the study. Gearbox vibration signals were denoised by continuous wavelet transform, and then transformed into DPDAF, which can clearly exhibite the impulse response signal differences with the six rotation cycles in the different wear conditions. Six rotation cycle energy were extracted as the feature vectors of gearbox gear wear fault, which were used to train BP neural network for fault pattern recognition. Test results showed that applying DPDAF and BP neural network to gearbox gear wear fault diagnosis was feasible and effective. The results provide a reference for the engineering applications of the polar angle frequency representation in the gearbox condition monitoring and fault diagnosis.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2012年第22期58-62,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家自然科学基金资助项目(50575063/E051301)
关键词 变速箱 故障诊断 神经网络 极坐标角频分布 transmissions fault detection neural networks angle frequency distribution in polar diagram
  • 相关文献

参考文献25

  • 1贾继德,陈剑,邱峰.一种适用于非平稳、非线性振动信号分析方法研究[J].农业工程学报,2005,21(10):9-12. 被引量:21
  • 2沈国际,陶利民,温熙森,陈仲生.基于Wigner分布的齿轮箱振动信号相位估计[J].机械工程学报,2004,40(9):185-189. 被引量:6
  • 3Newland D E. Wavelet analysis of vibration.I: Theory[J].Journal of Vibration and Acoustics, 1994, 116(4): 40 -425.
  • 4Wang W J,McFadden P D. Application of wavelets togearbox vibration signals for fault detection[J]. Journal ofSound and Vibration, 1996,192(5): 927-939.
  • 5Wang W J,McFadden P D. Application of wavelets togearbox vibration signals for fault detection[J]. Journal ofSound and Vibration, 1996,192(5): 927-939.
  • 6Dalpiaz G, Rivola A, Rubini R. Effectiveness andsensitivity of vibration processing techniques for localfault detection in gears [J]. Mechanical Systems andSignal Processing, 2000,14(3): 387-412.
  • 7Narasimhan S V,Nayak Malini B. ImprovedWigner-Ville distribution performance by signaldecomposition and modified group delay [J]. SignalProcessing, 2003, 83(12): 2523-2538.
  • 8Georgakis A,Stergioulas L K, Giakas G_ Wigner filteringwith smooth roll-off boundary for differentiation of noisynon-stationary signals [J]. Signal Processing, 2002, 82(10):1411-1415.
  • 9贾继德,陈安宇,朱忠奎.基于信息熵的时频参数优化及内燃机轴承磨损监测[J].农业工程学报,2010,26(4):203-207. 被引量:4
  • 10Mallat S. A wavelet tour of signals processing[M].Academic Press, 1997.

二级参考文献87

  • 1沈国际,陶利民,温熙森,陈仲生.基于Wigner分布的齿轮箱振动信号相位估计[J].机械工程学报,2004,40(9):185-189. 被引量:6
  • 2耿中行,屈梁生.小波包原理及其在机械故障诊断中的应用[J].信号处理,1994,10(4):244-249. 被引量:23
  • 3贾继德,陈剑,邱峰.一种适用于非平稳、非线性振动信号分析方法研究[J].农业工程学报,2005,21(10):9-12. 被引量:21
  • 4Gerald Matz,Franz Hlawatsch.Wigner distributions (nearly) everywhere:Time-frequency analysis of signals,systems,random processes,signal spaces,and frames[J].Signal Processing,2003,83(7):1355-1378.
  • 5Georgakis A,Stergioulas L K,Giakas G.Wigner filtering with smooth roll-off boundary for differentiation of noisy non-stationary signals[J].Signal Processing,2002,82(10):1411-1415.
  • 6Narasimhan S V,Nayak Malini B.Improved Wigner-Ville distribution performance by signal decomposition and modified group delay[J].Signal Processing,2003,83(12):2523-2538.
  • 7Cohen L.Time-frequency distribution-a review[J].Proceedings of the IEEE,1989,77(7):941-981.
  • 8Choi H,Williams W J.Improved time-frequency representation of multicomponent signals using exponential kernels[J].IEEE Trans ASSP,1989,37(6):862-871.
  • 9Xu Guanlei,Wang Xiaotong,Xu Xiaogang.Generalized entropic uncertainty principle on fractional Fourier transform[J].Signal Processing,2009,89(12):2692-2697.
  • 10Qu Jian,Wu Huiying,Cheng Ping,et al.Non-linear analyses of temperature oscillations in a closed-loop pulsating heat pipe[J].International Journal of Heat and Mass Transfer,2009,52 (15/16):3481-3489.

共引文献104

同被引文献73

  • 1苑士华,侯国勇,张宝斌.液压机械无级变速器的变参数PID控制[J].机械工程学报,2004,40(7):81-84. 被引量:21
  • 2贾继德,孔凡让,王建平,刘维来,干方建,龙潜,陈剑,陈兴昭.基于瞬时频率估计的内燃机信号阶比分析[J].内燃机工程,2005,26(3):15-18. 被引量:13
  • 3娄云,李青林,赵卫兵,刘庆庭.柴油发动机燃油压力波形特征提取方法[J].内燃机车,2005(10):18-20. 被引量:1
  • 4刘宏杰,冯博琴,李文捷,吕焕通.粗糙集属性约简判别分析方法及其应用[J].西安交通大学学报,2007,41(8):939-943. 被引量:19
  • 5肖建华.智能模式识别方法[M].广州:华南理工大学出版社,2006.
  • 6Renius K T, Resch R. Continuously variable tractor transmissions[C]//2005 Agricultural Equipment Technology Conference. Louisville: ASME, 2005: 1-37.
  • 7Xu Liyou, Zhou Zhili, Zhang Mingzhu, et al. Application of hydro-mechanical continuously variable transmissions in tractors[C]//Proceedings of 7th Asia-Pacific Conference for Terramechanics of the ISTVS. Changchun: Jilin University Press, 2004: 84-91.
  • 8Appleton A, Wiles T, Bowman D, et al. The next generation John Deere 8000 series tractor improvements and adaptations[J]. VDI-Berichte, 2005, 2005(1895): 77-89.
  • 9Pohlenz J, Grad K. CVT-system for use in large-scale farming applications[J]. VDI-Verichte, 2004, 2004(1855): 23-33.
  • 10Kim D C, Kim K U, Park Y J, et al. Analysis of shifting performance of power shuttle transmission[J]. Journal of Terramechanics, 2007, 44(1): 111-122.

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部