期刊文献+

字标注汉语词法分析中上文和下文孰重孰轻 被引量:3

Which is More Effective for Chinese Lexical Analysis via Character Tagging:Above-context Versus Below-context
下载PDF
导出
摘要 汉语词法分析是中文信息处理的基础,现阶段汉语词法分析的主流技术是基于统计的方法,这类方法的本质都是把词法分析过程看作序列数据标注问题。上下文是统计方法中获取语言知识和解决自然语言处理中多种实际应用问题必须依靠的资源和基础。汉语词法分析时需要从上下文获取相关的语言知识,但上文和下文是否同样重要呢?为克服仅凭主观经验给出猜测结果的不足,对基于字标注汉语词法分析的分词、词性标注、命名实体识别这3项子任务进行了深入研究,对比了上文和下文对各个任务性能的影响;在国际汉语语言处理评测Bakeoff多种语料上进行了封闭测试,采用分别表征上文和下文的特征模板集进行了对比实验。结果表明,在字标注框架下,下文对汉语词法分析性能的贡献比上文的贡献高出6个百分点以上。 Chinese lexical analysis is a foundational task for Chinese information processing.At the current,the mainstream technology of Chinese lexical analysis is based on statistical methods.These methods treat the analysis process as a sequence data tagging problem.Context is the necessary resource not only for obtaining linguistic knowledge in statistical linguistics but also for solving the problem in natural language processing.Chinese lexical analysis needs the help of correlative context.However,are above and below the same important? To overcome the lack of giving the result by the subjective experience,we studied the contribution of above and below for character-based tagging Chinese lexical analysis via the large number of experiments about word segmentation,POS tagging and named entity recognition.Closed evaluations were performed on many kinds of corpus from the international Chinese language processing Bakeoff,and comparative experiments were performed on different feature templates which describe above-context and below-context.Experimental results show that the performance by the below-context increases 6 percentage points than by the above-context.
出处 《计算机科学》 CSCD 北大核心 2012年第11期201-203,236,共4页 Computer Science
基金 高等学校博士学科点专项科研基金项目(20050007023) 河南省高等学校青年骨干教师项目(2009GGJS-108)资助
关键词 汉语词法分析 字标注 上下文 分词 词性标注 命名实体识别 Chinese lexical analysis Character tagging Context Word segmentation POS tagging Named entity recognition
  • 相关文献

参考文献5

  • 1章林柯,何琳,江涌.基于MIMO模型的潜艇声学故障预报研究[J].武汉理工大学学报(交通科学与工程版),2008,32(2):320-322. 被引量:7
  • 2章林柯,何琳,朱石坚.潜艇主要噪声源识别方法研究[J].噪声与振动控制,2006,26(4):7-10. 被引量:27
  • 3Tax D M J,Duin R P W. Support Vector Data Description[J]. Machine Learning, 2004,54 45-66.
  • 4Tax D M J, Juszczak P. Kernel Whitening for One-Class Classifi cation[J]. IJPRAI, 2003,17(3) : 333-347.
  • 5Guoa S M,Chena L C,Tsaib J S H. A boundary method for out lier detection based on support vector domain description[J]. Pattern Recognition, 2009,42 : 77-83.

二级参考文献26

  • 1张宝成,徐雪仙.舰艇水下噪声源贡献的分析[J].舰船力学情报,1994(10):40-46. 被引量:5
  • 2蒋国健,任克明,马杰,林建恒,王怀应,邢新宇.噪声抵消法估计和抑制声呐部位主要自噪声[J].声学学报,1996,21(4):289-296. 被引量:12
  • 3何祚镛.声学逆问题——声全息场变换技术及源特性判别[J].物理学进展,1996,16(3):600-612. 被引量:39
  • 4贝达特,皮尔索,凌福根译.相关分析和谱分析的工程应用[M].北京:国防工业出版社,1983.
  • 5张方,朱德懋.基于神经网络模型的动载荷识别[J].振动工程学报,1997,10(2):156-162. 被引量:29
  • 6E.A.Scott,C.R.Fuller,W.F.O'Brien,etc.Sparce distributer associative memory for the identification of aerospace acoustic sources[J].AIAA Journal.1993,31(9):1583-1589.
  • 7Chang-Moon Myung,Young-Shin Lee,Hyun-Soo Kim.ANN Approaches on the Identification of Impact Loadings of the Composite Cylindrical Shell[C].Eleventh International Congress on Sound and Vibration,Petersburg,Russia,2004:1905-1912.
  • 8Cichocki A,Amari S-I.Adaptive Blind Signal and Image Processing:Learning Algorithms and Applications[M].New York:Jonhn Wiley & Sons,Inc.2003.(revised and corrected edition).
  • 9F.Briolle,Chun Ru Wan,Hong Tat Chee,etc.Blind Sepration of Underwater Sources in Shallow Water[J].Underwater Defence Technology Proceeding 06-97-UDT-186,1997.
  • 10Peter WT Yuen.Enhancement of Detection Efficiency for Minute Signals Embedded in Large Background Using Non-stantionarity[J].Underwater Defence Technology Proceeding 05-00-UDT-150,2000.

共引文献30

同被引文献27

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部