期刊文献+

基于流形距离的人工免疫半监督聚类算法 被引量:4

Artificial Immune Clustering Semi-supervised Algorithm Based on Manifold Distance
下载PDF
导出
摘要 将流形距离作为样本间相似性的基本度量测度,加入成对约束信息,通过近邻传播得出新的度量矩阵。把聚类问题转化为一优化数学模型。采用克隆选择算法求解这个优化模型,得出最后的聚类结果,通过人工数据集和UCI标准数据集验证了这种方法具有较高的准确性。 Manifold distance was used as the basic measure of the sample similarity between samples.The pair-wise constrains prior information was introduced,then the measure matrix was obtained through affinity propagation.So the clustering problem was transformed as one optimal model.Clonal selection algorithm was employed to solve this model,and the clustering results were given.Experiments on artificial data sets and UCI benchmark data set show that the proposed method can give the better accuracy.
出处 《计算机科学》 CSCD 北大核心 2012年第11期204-207,共4页 Computer Science
基金 吉林省自然科学基金项目(201215165) 符号计算与知识工程教育部重点实验室开放基金项目(93K-17-2010-K05)资助
关键词 流形距离 半监督聚类 人工免疫算法 Manifold distance Semi-supervised clustering Artificial immune algorithm
  • 相关文献

参考文献11

  • 1Demiriz A, Benneit K P. Semi-Supervised clustering using genetic algorithm [C]//ANNIE 99. New York: ASME Press, 1999 809-814.
  • 2Xing E P,Ng A Y,Jordan M. Distance metric learning,with a plication to clustering with side-information [C]//The 16th A] nual Conference on Neural Information Processing System] Cambridge: MIT Press, 2003 : 505-512 /.
  • 3Bilenko M, Basu S, Mooney R J. Integrating Constraints and Metric Learning in Semi-Supervised Clus tering [C]//The 21stInternational Conference on Machine Learning. Banff, Canada, 2004 ; 81-88.
  • 4Basu S, Bilenko M, Mooney R J. A Probabilistic Framework for Semi-Supervised Clustering[C] // The 10th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mi- ning. New York, USA, 2004 : 59 68.
  • 5Yin X S, Chen S C, Hu E L, et al. Semi-supervised clustering with metric learning: An adaptive kernel method [J]. Pattern Recognition, 2010,43 (4) : 1320-1333.
  • 6Mahdieh S B, Saeed B S. Kernel-based metric learning for semi- supervised clustering E J ]. Neurocomputing, 2010,73(7-9): 1352-1361.
  • 7Zhang H X, Lu J. Semi-supervised fuzzy clustering: A kernel based approach [J ]. Knowledge-based systems, 2009, 22 ( 6 ) : 477-481.
  • 8冯晓磊,于洪涛.基于流形距离的半监督近邻传播聚类算法[J].计算机应用研究,2011,28(10):3656-3658. 被引量:6
  • 9公茂果,焦李成,马文萍,张向荣.基于流形距离的人工免疫无监督分类与识别算法[J].自动化学报,2008,34(3):367-375. 被引量:30
  • 10Klein D, Kamvar S D, Manning C D. From instance-level cow straints to space-level constraints: Making the most of prior knowledge in data clustering[C] //Proc of the 19th International Conference on Machine Learning. Sydney, 2002:307-314.

二级参考文献15

  • 1HaiyanPan,JunZhu,DanfuHan.Genetic Algorithms Applied to Multi-Class Clustering for Gene Ex-pression Data[J].Genomics, Proteomics & Bioinformatics,2003,1(4):279-287. 被引量:9
  • 2GONG Maoguo,DU Haifeng,JIAO Licheng.Optimal approximation of linear systems by artificial immune response[J].Science in China(Series F),2006,49(1):63-79. 被引量:21
  • 3公茂果,焦李成,杜海峰,马文萍.用于约束优化的人工免疫响应进化策略[J].计算机学报,2007,30(1):37-47. 被引量:16
  • 4FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science,2007,315(5814) : 972-976.
  • 5SERGIOS T, KONSTANTINOS K. Pattern recognition[ M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2010: 134-160.
  • 6DEMIRIZ A, BENNEIT K P, EMBRECHTS M J. Semi-supervised clustering using genetic algorithm [ C ]//Proc of Intelligent Engineer- ing Systems through Artificial Neural Networks. 1999: 809-814.
  • 7ZHU Xiao-jin. Semi-supervised learning literature survey[ R]. 2008 : 1-60.
  • 8KULIS B, BASU S, DHILLON I, et al. Semi-supervised graph clus- tering: a kernel approach[J]. Machine Learning,2009,74(1) : 1- 22.
  • 9GIVONI I E, FREY B J. Semi-supervised affinity propagation with instance-level constraints[ C ]//Proc of the 12th International Confe- rence on Artificial Intelligence and Statistics. 2009.
  • 10LELIS L, SANDER J. Semi-supervised density-based clustering [ C ]//Proc of the 9th IEEE International Conference on Data Mining. 2009 : 842 - 847.

共引文献33

同被引文献43

  • 1王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报,2007,35(8):1577-1581. 被引量:61
  • 2XU R, WUNSCH D. Survey of clustering algorithms[ J]. IEEE Transactions on Neural Networks, 2005, 16(3) : 645 -678.
  • 3HARTIGAN J A, WONG M A. A k-means clustering algorithm[ J]. Applied Statistics, 1979, 28(1) : 100 - 108.
  • 4KAUFMAN L, ROUSSEUW P J. Finding groups in data: an intro- duction to cluster analysis[ M]. New York: John Wiley & Sons, 1990:108 - 110.
  • 5SU M C, CHOU C H. A modified version of the k-means algorithm with a distance based on cluster symmetry [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (6): 674 - 680.
  • 6ZHOU D Y, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[ C]//Proceedings of Advances in Neural In- formation Processing Systems 16. Cambridge: MIT Press, 2004:321 -328.
  • 7CHAPELLE O, ZIEN A. Semi-supervised classification by low den- sity separation[ EB/OL]. [ 2012- 10- 10]. http://eprints, pascal- network, org/archive/00000388/01/pdf2899, pdf.
  • 8WANG L, BO L F, JIAO L C. A modified k-means clustering with a density-sensitive distance metric[ C]//Proceedings of the First In- ternational Conference on Rough Sets and Knowledge Technology. Berlin: Springer-Verlag, 2006:544-551.
  • 9GONG M G, JIAO L C, WANG L, et al. Density-sensitive evolu- tionary clustering[ C]/! Proceedings of PAKDD 2007, LNAI 4426. Berlin: Springer-Verlag, 2007:507 - 514.
  • 10USPS dataset[ EB/OL]. [ 2012-10-10]. http://www-i6, informa- tik. rwth-aachen, de/ keysers/usps, html.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部