期刊文献+

一类调和级数的递推求和公式(英文)

Recursive Summation Formulas for Harmonic Series
下载PDF
导出
摘要 通过对一个周期函数进行傅里叶级数展开,得到了偶数阶的调和级数以及交错的奇数阶调和级数求和的递推公式.然后在此基础之上,得到了其他两类调和级数的递推求和公式. We develop a recursive formula for even order harmonic series and one for alternating odd order harmonic series by an application of Fourier series expansion of a periodic function with the help of mathematical software-Mathematica 7. And then for the other two kinds of harmonic series, we get similar results derived from the previous ones.
作者 李向阳 方成
出处 《大学数学》 2012年第5期129-132,共4页 College Mathematics
关键词 调和级数 递推公式 傅里叶级数 无限和 MATHEMATICA harmonic series recursive formula Fourier series infinite sum mathematica
  • 相关文献

参考文献7

  • 1Arpad Benyi. A recursion for alternating harmonic series[J]. J. Appl. Math. & Computing, 2005,18(1) : 377-381.
  • 2Iickho Song. A reeursive formula for even order harmonic series[J]. J. Computational and Appl. Math. , 1988, 21(2): 251 -256.
  • 3Hofbauer J. A simple proof of 1 +1/2^z +1/3^z +…=n^2/6- and Related Identities[J]. Amer. Math. Monthly, 2002, 109(2) : 196-200.
  • 4Papadimitriou I. A simple proof of the formula ^∞∑k-2= л^2/6 [J]. Amer. Math. Monthly, 1973,80(4) : 424-425.
  • 5Kalman D. Six ways to sum a series[J]. College Math. J. , 1993,24(5) : 402-421.
  • 6Liu Zheng. An Elementary proof for two basic alternating series[J], Amer. Math. Monthly, 2002,109(2): 188-189.
  • 7.中国设立超级稻推广项目,年增产可多养活7000万人[N].人民日报(海外版),2005—02—16(2).

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部