期刊文献+

基于自由权矩阵的时滞神经网络系统时滞相依全局稳定性分析 被引量:2

On the delay-dependent global stability analysis of delayed neural networks based on the free-weighting matrix method
下载PDF
导出
摘要 在激励函数有界且满足扇区条件的情形下研究了一类同时具有时变时滞和无穷分布时滞的神经网络系统全局稳定性.通过构造一个包含更多信息的新的Lyapunov泛函,利用自由权矩阵更好地描述Newton-Leibniz公式中各项以及系统各项之间的关系,充分利用状态变量、时滞函数、状态变量以及Lyapunov泛函导数中出现的负项中隐藏的信息,并结合S-Procedure等方法以线性矩阵不等式(LMI)的形式给出了系统时滞相依全局指数稳定充分条件.文中结果去掉了以往文献对时变时滞函数的导数具有不超过1的上界的限制条件,具有更低的保守性,且利用Matlab工具箱极易验证条件的正确性,并推广改进了相关文献的结果. The global stability of the neural networks with both time-varying and infinite distributed delays is studied based on the condition that the activation functions satisfy the sector condition. By constructing a new Lyapunov functional which contains more information, utilizing the free-weight matrices which can better describe the relations among the terms of Newton-Leibnitz formula and the system, taking advantage of the information hidden in the state variable, the time delay functions , the derivative of the state variable and the Lyapunov functional, combining with the S-procedure, a delay-dependent sufficient condition for guaranteeing the globally exponential stability of the system is derived in form of LMI, which can be easily checked by the Matlab toolbox. The result obtained in this article improves the previous ones on which it threw off the constraint that the derivative of the time-varying function has an upper bound no larger than 1 and is less conservative than the relevant ones.
作者 毛凯 时宝
出处 《江西理工大学学报》 CAS 2012年第5期82-87,92,共7页 Journal of Jiangxi University of Science and Technology
基金 海军航空工程学院专业技术拔尖人才基金(名师工程)
关键词 时变时滞 无穷分布时滞 自由权矩阵 S-PROCEDURE LYAPUNOV泛函 time-varying delays infinite distributed delays free-weighting matrix S-Procedure Lyapunov functional
  • 相关文献

参考文献23

  • 1Liao X F,Chen G R,Sanehez E N. Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach[J]. Neural Networks, 2002,5(7):855-866.
  • 2Li C D,Liao X F,Zhang R. Delay-dependent exponential stability analysis of hi-directional associative memory neural networks with time delay: an LMI approach[J]. Chaos,Solitons&Fractals ,2005,24 (4):1119-1134.
  • 3Xu S Y,Lam J,Ho D W C,et al. Novel global asymptotic stability criteria for delayed cellular neural networks[J]. IEEE Trans Circ Syst II,2005,52(6): 349-353.
  • 4Xu S Y,Lam J,Ho D W C. A new LMI condition for delay- dependent asymptotic stability of delayed Hopfield neural netwarks[J]. IEEE Trans Circ Syst,2006,53(3):230-234.
  • 5Arik S. An analysis of exponential stability of delayed neural networks with time-varying delays[J]. Neural Networks ,2004,17(7): 1027-1031.
  • 6Zhang Q ,Wei X P,Xu J. Delay-dependent exponential stability of cellular neural networks with time-varying delays[J]. Chaos, Solitons&Fractals, 2005,23(4): 1363-1369.
  • 7Zhang H B,Li C D,Liao X F. A note oil the robust stability of neural networks with time delay[J]. Chaos,Solitons&Fractals, 2005, 25(2):357-360.
  • 8Liu Jiang. Global exponential stability of Cohen-Grossberg neural networks with time-varying delays[J]. Chaos,Solitons & Fractals, 2005,26(3):935-945.
  • 9He Y,Wang Q G,Zheng W X. Global robust stability for delayed neural networks with polytopic type uncertaintles[J]. Chaos,Solitons & Fractals,2005,26(5):1349-1354.
  • 10Li H Y,Chen B,Zhou Q,et al. Robust exponential stability for uncertain stochastic neural networks with discrete and distributed time-varying delays[J]. Physics Letters A,2008,372(19):3385-3394.

二级参考文献9

  • 1Wang Z, Liu Y, Liu X. On global asymptotic stability of neural networks with discrete and distributed delays [ J ]. Physics Letters A, 2005,345(4) :299 - 308.
  • 2Wang B, Jian J, Jiang M. Stability in lagrange sense for cohen-grossberg neural networks with time-varying delays and finite distributed delays [ J ]. Nonlinear Analysis : Hybrid Systems, 2010,4(1) :65 - 78.
  • 3Wang Z, Liu Y, Liu X. State estimation for jumping recurrent neural networks with discrete and distributed delays [J]. Neural Networks, 2009,22(1):41-48.
  • 4Lien C, Chung L, Global asymptotic stability for cellular neural networks with discrete and distributed time-varying delays[J]. Chaos, Solitons & Fractals , 2007,34(4) : 1213 - 1219.
  • 5Song Q, Wang Z, Neural networks with discrete and distributed time-varying delays:a general stability analysis[J ]. Chaos, Solitons & Fractals, 2008,37(5):1538- 1547.
  • 6Fan Q, Shao J. Positive almost periodic solutions for shunting inhibitory cellular neural networks with time-varying and continuously distributed delays [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2010,15 (6) : 1655 - 1663.
  • 7Chen W, Zheng W. Global asymptotic stability of a class of neural networks with distributed delays [ J ]. IEEE Transactions on Grcuits and Systems- I , 2006,53 (3) : 644 - 652.
  • 8Zhou L, Hu G. Global exponential periodicity and stability of cellula neural networks with variable and distributed delays [J]. Applied Mathematics and Computation, 2008,195(2) : 402- 411.
  • 9Lu Y, Lu W, Sun J. Convergence dynamics of stochastic reaction-diffusion recurrent neural networks with continuously distributed delays [J]. Nonlinear Analysis : Real World Applications, 2008,9(4) : 1590 - 1606.

共引文献2

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部