摘要
讨论了希尔伯特空间上的两个不同的幂等算子P、Q的组合aP+bQ-cPQ的可逆性问题,利用幂等算子的性质和空间分解的技巧证明了aP+bQ-cPQ的可逆性与系数的选取无关,其中a,b,c∈瓘,ab≠0,a+b-c≠0.而且构造反例说明该结果不能推广到aP+bQ-cPQ-dQP的情形.
Discussed the problem of invertibility of combinations of two different idempotent operators P,Q on a Hilbert space. The invertibility of aP + bQ-cPQ are independent choice of coefficients, where a, b, c ∈ C ,ab ≠ 0 ,a +b ≠c which was proved by using the properties of idempotent operators and the techniques of space decomposition. Moreover, some counter examples were constructed to denote that the result can not be generalized to the case aP + bQ-cPQ-dQP .
出处
《广西民族大学学报(自然科学版)》
CAS
2012年第3期48-51,共4页
Journal of Guangxi Minzu University :Natural Science Edition
基金
湖北省教育厅重点项目(D20122202)
湖北省教育厅青年项目(B20122203)
关键词
幂等算子
可逆性
幂等算子的组合
Idempotent
Invertibility
Combinations of Idempotents