期刊文献+

重症肌无力的免疫机制研究进展 被引量:7

下载PDF
导出
摘要 重症肌无力(myastheniagravis,MG)是依赖细胞免疫并由抗乙酰胆碱受体抗体(anti—acetyl—cholinereceptorantibody,anti—AChRAb)介导、补体参与导致神经肌肉接头(neuromuscularjunction,NMJ)处传递障碍的获得性自身免疫病。目前,MG发病机制的概念已从40年前的辅助性T细胞(Th)辅助B细胞产生抗体发展到多种免疫细胞及其不同亚群相互作用、大量细胞因子共同参与、不同补体途径发挥作用的复杂免疫网络调控机制。针对MG发病的免疫机制中不同关键点进行干预,人类在不断探索MG的有效治疗方法和预防复发途径,并获得了可喜的结果。
出处 《中国神经免疫学和神经病学杂志》 CAS 北大核心 2012年第6期419-424,共6页 Chinese Journal of Neuroimmunology and Neurology
  • 相关文献

参考文献27

  • 1Chen Q, Kim YC, I.aurence A, et al. II. 2 controls the sta bility of Foxp3 expression in TGF beta-induced Foxp3 T cells in vivo[J]. J hnmunol, 2011, 186(11): 6329 6337.
  • 2Laurence A, Tato CM, Davidson TS, et al. Interleukin-2 sig naling via STAT5 constrains T helper 17 cell generation[J]. Immunity, 2007. 26(3): 371 381.
  • 3Wang W, Milani M, Ostlie N, et aI. C57BI./6 mice genetical- ly deficient in II. 12/IL-23 and IFN--gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Thl cells[J]. J Irnmunol, 2007, 178 (11), 7072 7080.
  • 4Prochazkova J, Pokorna K, Holan V. 11712 inhibits the TGF-beta-dependent T cell developmental programs and skews the TGF-beta-induced differentiation into a Thl like di reetion[J]. Immunobiology, 2012, 217(1): 74-82.
  • 5王志强,张志坚,吴立坚,等.重症肌无力患者外周血单个核细胞TNF-a和IL6水平在疾病转归中的动态变化[J].中国冲经免疫学和神经病学杂志,2009,16(2):90-93.
  • 6Karachunski PI, Ostlie NS, Okita DK, et al. Interleukin-4 deficiency facilitates development of experimental myasthenia gravis and precludes its prevention by nasal administration of CD4 epitope sequences of the acetylcholine receptor[J]. J Neuroimmunol, 1999, 95:73 84.
  • 7Sheng JR, Li L, Ganesh BB, et al. Suppression of experimen tal autoimmune myasthenia gravis hy granu[ocyte-macrophage colony-stimulating factor is associated with an expansion of Foxp3+ regulatory T cells[J]. J Immunol, 2006, 177(8): 5296-5306.
  • 8Poussin MA, Goluszko E, Franco JU, et al. Role of IL 5 during primary and secondary immune response to acetylcho line receptor[J]. J Neuroimmunol, 2002, 125(1 2): 51 58.
  • 9Barr TA, Shen P, Brown S, et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL 6 pro- Jucing Bcells[J]. J Exp Med, 2012, 209(5) 1001 1010.
  • 10Chi LJ, Wang HB, Wang WZ. Impairment of circulating CD4+CD25+ regulatory T cells in patients with chronic in flammatory demyelinating polyradiculoneuropathy[J]. J Pe- ripher Nerv Syst, 2008, 13(1) : 54-63.

二级参考文献9

  • 1Khattri R, CoX T, Yasayko SA, et al. An essential role for scurfin in CD4^+ CD25^+ T regulatory cells[J]. Nat Immunol, 2003, 4(4): 337 -342.
  • 2Cosmi L, Liotta F, Lazzeri E, et al. Human CD8^+ CD25^+ thymocytes share phenotypic and functional features with CD4^+CD25^+ regulatory thymocytes[J]. Blood, 2003, 102 (12): 4107-4114.
  • 3Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection[J]. Nat Rev Immunol, 2006, 6(2): 127-135.
  • 4Sakaguchi S. Naturally arising CD4^+ regulatory T cells for immunologic self-tolerance and negative control of immune responses[J]. Annu Rev Immunol, 2004, 22(4):531-562.
  • 5Sakaguchi S. Naturally arising Foxp3-expressing CD25^+ CD4^+ regulatory T cells in immunological tolerance to self and non-self[J]. Nat Immunol, 2005, 6(4): 345-352.
  • 6Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3[J]. Nat Immunol, 2005, 6 (4): 331- 337.
  • 7Feherari Z, Sakaguchi S. Development and function of CD4^+ CD25^+ regulatory T cells[J]. Curt Opin Immunol, 2004, 16 (2) : 203-208.
  • 8Morgan ME, van Bilsen JH, Bakker AM, et al. Expression of Foxp3 mRNA is not confined to CD4^+ CD25^+ T regulatory cells in humans[J]. Hum Immunol, 2005, 66(1): 13-20.
  • 9Meriggioli MN. Myasthenia gravis with anti-acetylcholine receptor antibodies[J]. Front Neurol Neurosci, 2009, 26: 94- 108.

共引文献8

同被引文献84

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部