期刊文献+

基于光谱分析技术的农林生物质燃料特性的快速检测研究

Rapid Analysis of Agricultural and Forestry Biomass Fuel Using Spectroscopy
下载PDF
导出
摘要 快速检测生物质燃料特性对农林废弃物能源化利用具有重要意义。本研究利用光谱分析技术建立了松木、杉木和棉杆三类农林废弃物生物质的水分、灰分、挥发分、固定碳和热值预测模型。这些模型交叉校验决定系数均高于0.88。应用潜变量神经网络建模法后,水分平均决定系数达到了0.95。结果表明,应用光谱分析技术结合化学计量学方法,可完全替代传统的工业分析方法,为农林废弃物能源化利用提供一种快速检测生物质燃料特性的技术手段。 Rapid analysis of biomass fuel is of great importance to the energy utilization of agricultural and forestry waste. The models for predicting the moisture, ash, volatile matter, fixed carbon and calorific value of three kinds of agricultural and forestry waste such as pine wood, cedar wood and cotton stalk are established by using a visible and near-infrared spectroscopy. All of these models have a determination coefficient greater than 0.88 after cross validation. When the artificial neural network (ANN) modeling with several latent variables is used, the models have the average determination coefficient of up to 0.95 for moisture. The result shows that the visible and near-infrared spectroscopy combined with chemometrics can be used to replace the traditional analysis methods in industry completely and can provide a new method for the rapid detection of the biomass fuel properties of agricultural and forestry waste.
出处 《红外》 CAS 2012年第11期33-38,共6页 Infrared
关键词 生物质 燃料特性 光谱分析 偏最小二乘回归 人工神经网络 biomass fuel property spectroscopic analysis artificial neural network (ANN)
  • 相关文献

参考文献10

  • 1N. Labb e, S.H. Lee, H. W. Cho, et al.Enhanced discrimination and calibration of biomass NIR spectral data using non-linear kernel methods [J].Bioresour. Technol. 2008, 99(17): 8445-8452.
  • 2G. G. Allison, C. Morris, E. Hodgson, et al. Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy [J].Bioresour. Technol. 2009, 100(24): 6428-6433.
  • 3刘丽英,陈洪章.玉米秸秆组分近红外漫反射光谱(NIRS)测定方法的建立[J].光谱学与光谱分析,2007,27(2):275-278. 被引量:44
  • 4姚燕,张建强,蔡晋辉,蒋庆,陈景春.利用近红外光谱技术测定生物质的水分含量[J].可再生能源,2011,29(3):46-49. 被引量:4
  • 5江泽慧,黄安民.木材中的水分及其近红外光谱分析[J].光谱学与光谱分析,2006,26(8):1464-1468. 被引量:51
  • 6H. Yang, B. Kuang, A. M. Mouazen,In situ determination of growing stages and harvest time of tomato (Lycopersicon esculentum) fruits using fiberoptic visible-near-infrared (Vis-NIR) spectroscopy [J]. Appl. Spectrosc. 2011,65(8): 931-938.
  • 7H. Yang, B. Kuang, A. M. Mouazen. Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction [J]. Eur.J.Soil Sci. 2012, 63(3), 410-420.
  • 8M. A. Sanderson, F. Agblevor, M. Collins, et al. Compositional analysis biomass feedstocks by near infrared reflectance spectroscopy [J]. Biomass Bioen- ergy, 1996,11(5): 365-370.
  • 9皇才进,刘贤,杨增玲,韩鲁佳.秸秆热值近红外光谱模型的外部验证结果间的统计比较分析[J].光谱学与光谱分析,2009,29(5):1264-1267. 被引量:8
  • 10C. C. Fagan, C. D. Everard, K. McDonnell. Prediction of moisture, calorific value, ash and carbon content of two dedicated bioenergy crops using nearinfrared spectroscopy [J].Bioresour. Technol. 2011, 102(8): 5200-5206.

二级参考文献48

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部